Subscribe to RSS
DOI: 10.1055/s-2005-921932
Radical Cyanocarbonylation Using Alkyl Allyl Sulfone Precursors
Publication History
Publication Date:
28 November 2005 (online)

Abstract
Acyl cyanides have been prepared by the three-component coupling reactions comprised of alkyl allyl sulfones, carbon monoxide, and p-tolylsulfonyl cyanide under tin-free radical reaction conditions.
Key words
cyanocarbonylation - acyl radical - tin-free radical reaction - alkyl allyl sulfone - carbon monoxide
- For a review on acyl cyanides, see:
-
1a
Thesing J.Witzel D.Brehm A. Angew. Chem. 1956, 68: 425 -
1b
Hünig S.Schaller R. Angew. Chem., Int. Ed. Engl. 1982, 21: 36 - For recent reports on acyl cyanides see:
-
2a
Yamamoto Y.Kinpara K.Saigoku T.Takagishi H.Okuda S.Nishiyama H.Itoh K. J. Am. Chem. Soc. 2005, 127: 605 -
2b
Duplais C.Bures F.Sapountzis I.Tobias TJ.Cahiez G.Knochel P. Angew. Chem. Int. Ed. 2004, 43: 2968 -
2c
Watahiki T.Ohba S.Oriyama T. Org. Lett. 2003, 5: 2679 -
2d
Yoo BW.Kim DY.Choi JW.Hwang SK.Choi KI.Kim JH. Bull. Korean Chem. Soc. 2003, 24: 263 -
2e
Saikia P.Laskar DD.Prajapati D.Sandhu JS. Tetrahedron Lett. 2002, 43: 7525 -
2f
Yoo BW.Hwang SK.Kim DY.Choi JW.Ko JJ.Choi KI.Kim JH. Tetrahedron Lett. 2002, 43: 4813 -
3a
Cao Y.-Q.Du Y.-F.Chen B.-H.Li J.-T. Synth. Commun. 2004, 34: 2951 -
3b
Olah GA.Arvanaghi M.Prakash GKS. Synthesis 1983, 636 -
3c
Ando T.Kawate T.Tamawaki J.Hanafusa T. Synthesis 1983, 637 - 4
Tanaka M. Bull. Chem. Soc. Jpn. 1981, 54: 637 -
5a
Quiclet-Sire B.Zard SZ. J. Am. Chem. Soc. 1996, 118: 1209 -
5b
Guyader FL.Quiclet-Sire B.Seguin S.Zard SZ. J. Am. Chem. Soc. 1997, 119: 7410 -
5c
Xiang J.Jiang W.Gong J.Fuchs PL. J. Am. Chem. Soc. 1997, 119: 4123 -
5d
Quiclet-Sire B.Seguin S.Zard SZ. Angew. Chem. Int. Ed. 1998, 37: 2864 -
5e
Bertrand F.Quiclet-Sire B.Seguin S.Zard SZ. Angew. Chem. Int. Ed. 1999, 38: 1943 -
6a
Kim S.Lim CJ. Angew. Chem. Int. Ed. 2002, 41: 3265 -
6b
Kim S.Song H.-J. Synlett 2002, 2110 -
6c
Kim S.Lim CJ. Bull. Korean Chem. Soc. 2003, 24: 1219 -
6d
Lee S.Lim CJ.Kim S. Bull. Korean Chem. Soc. 2004, 25: 1611 - 7
Kim S.Kim S.Otsuka N.Ryu I. Angew. Chem. Int. Ed. 2005, 44: 6183 - For examples of radical reactions involving two radical C1 synthons, see:
-
8a
Ryu I.Kuriyama H.Minakata S.Komatsu M.Yoon J.-Y.Kim S. J. Am. Chem. Soc. 1999, 121: 12190 -
8b
Ryu I.Kuriyama H.Miyazato H.Minakata S.Komatsu M.Yoon J.-Y.Kim S. Bull. Chem. Soc. Jpn. 2004, 77: 1407 - For reviews on acyl radicals and radical carbonylations, see:
-
9a
Chatgilialogu C.Crich D.Komatsu M.Ryu I. Chem. Rev. 1999, 99: 1991 -
9b
Ryu I.Sonoda N. Angew. Chem. Int. Ed. 1996, 35: 1050 -
9c
Ryu I.Sonoda N.Curran DP. Chem. Rev. 1996, 96: 177 -
11a
Corey EJ.Schmidt G. Tetrahedron Lett. 1980, 21: 731 -
11b
Bal BS.Childers WE.Pinnick HW. Tetrahedron 1981, 37: 2091 - 13
Smith TAK.Whitham GH. J. Chem. Soc., Chem. Commun. 1985, 897 - For a primary acyl radical, see:
-
13a
Nagahara K.Ryu I.Kambe N.Komatsu M.Sonoda N. J. Org. Chem. 1995, 60: 7384 -
13b For a secondary acyl radical, see:
Boese WT.Goldman AS. Tetrahedron Lett. 1992, 33: 2119 -
13c For decarbonylation rates of acyl radicals, see:
Chatgilialoglu C.Ferreri C.Lucarini M.Pedrielli P. Organometallics 1995, 14: 2672 -
15a
Tsunoi S.Ryu I.Yamasaki S.Fukushima H.Tanaka M.Komatsu M.Sonoda N. J. Am. Chem. Soc. 1996, 118: 10670 -
15b
Ryu I.Kreimerman S.Araki F.Nishitani S.Oderaotoshi Y.Minakata S.Komatsu M. J. Am. Chem. Soc. 2002, 124: 3812
References
After removal of heptane from the reaction mixture, IR and 13C NMR were taken. IR (polymer): 1711 (C=O), 2343, 2361 (CN) cm-1. 13C NMR (100 MHz, CDCl3): δ = 114.5 (CN), 178.8 (C=O) cm-1.
12Similarly, quenching with aniline afforded the corresponding amide in 78% yield.
16
Typical Procedure:
Heptane (20 mL), 4-phenoxylbutyl allyl sulfone (51 mg, 0.2 mmol), p-tolylsulfonyl cyanide (57 mg, 0.3 mmol), and V-40 (10 mg, 0.04 mmol) were placed in a 50 mL stainless steel autoclave. The autoclave was sealed, purged three times with 10 atm of CO, pressurized with 95 atm of CO, and then heated at 100 °C with stirring for 12 h. After excess CO was discharged at r.t., the reaction mixture was poured into a 100 mL round-bottom flask, quenched with excess MeOH at r.t. for 4 h with stirring. After the solvent and MeOH were removed under reduced pressure, the residue was purified by a silica gel column chromatography using EtOAc and n-hexane (1:20) as eluent to give 5-phenoxypentanoic acid methyl ester (33 mg, 80%) and 5-phenoxypentanenitrile (2 mg, 6%). Caution! All operations should be done carefully inside a fume hood.
5-Phenoxypentanoic Acid Methyl Ester (
6).
1H NMR (400 MHz, CDCl3): δ = 1.79-1.83 (m, 4 H), 2.37-2.40 (m, 2 H), 3.66 (s, 3 H), 3.94-3.97 (m, 2 H), 6.86-6.93 (m, 3 H), 7.26-7.28 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 28.7, 33.7, 51.5, 67.2, 114.6, 120.6, 129.4, 158.9, 173.9. IR (polymer): 693, 756, 1171, 1247, 1498, 1601, 1738, 2951 cm-1. HRMS: m/z calcd for C12H16O3 [M+] = 208.1099; found: 208.1096.