References and Notes
1a
Webb KS.
Levy D.
Tetrahedron Lett.
1995,
36:
5117
1b
Voisin AS.
Bouillon A.
Lancelot JC.
Rault S.
Tetrahedron
2005,
61:
1427
1c
Brown Ripin DH.
Cai W.
Brenek SJ.
Tetrahedron Lett.
2000,
41:
5817
2
Thiebes C.
Prakash GHS.
Petasis NA.
Olah GA.
Synlett
1998,
141
3a
Prakash GKS.
Panja C.
Mathew T.
Surampundi V.
Petasis NA.
Olah GA.
Org. Lett.
2004,
6:
2205
3b
Salzbrunn S.
Simon J.
Prakash GKS.
Petasis NA.
Olah GA.
Synlett
2000,
1485
4a
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
4b
Tyrrell E.
Brookes P.
Synthesis
2003,
469
5a
Chan DMT.
Monaco KL.
Wang RP.
Winters MP.
Tetrahedron Lett.
1998,
39:
2933
5b
Lam PYS.
Clark CG.
Saubern S.
Adams J.
Chan DMT.
Combs A.
Tetrahedron Lett.
1998,
39:
2941
5c
Lam PYS.
Vincent G.
Clark CG.
Deudon D.
Jadhav PK.
Tetrahedron Lett.
2001,
42:
3415
5d
Herradura PS.
Pendola KA.
Guy RK.
Org. Lett.
2000,
2:
2019
6a
Parry PR.
Wang C.
Batsanov AS.
Bryce MR.
Tarbit B.
J. Org. Chem.
2002,
67:
7541
6b
Sutherland S.
Gallagher T.
J. Org. Chem.
2003,
68:
3352
6c
Thompson AE.
Hughes G.
Batsanev AS.
Bryce MR.
Parry PR.
Tarbit B.
J. Org. Chem.
2005,
70:
388
6d
Cioffi CL.
Spencer WT.
Richards JJ.
Herr RJ.
J. Org. Chem.
2004,
69:
2210
7
Cai D.
Larsen RD.
Reider PJ.
Tetrahedron Lett.
2002,
43:
4285
8a
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
2885
8b
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
3323
8c
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
4369
9
Bouillon A.
Voisin AS.
Robic A.
Lancelot JC.
Collot V.
Rault S.
J. Org. Chem.
2003,
68:
10178
10
Cailly T.
Fabis F.
Lemaître S.
Bouillon A.
Rault S.
Tetrahedron Lett.
2005,
46:
135
11
Hansen HM.
Lysén M.
Begtrup M.
Kristensen J.
Tetrahedron
2005,
61:
9955
12
Typical Procedure for Obtention of ortho
-Cyano-pyridylboronic Acids 1a-d.
To a stirred solution under N2 of 2,2,6,6-tetramethyl-piperidine (20.2 mmol, 3.4 mL) in THF (40 mL) was added at -30 °C 2.5 M n-BuLi (19.2 mmol, 7.7 mL). The solution was allowed to reach 0 °C, kept under stirring during 15 min and cooled to -80 °C. 2-Cyanopyridine (9.6 mmol, 1 g) in THF (20 mL) was slowly added to the mixture over 15 min. After 30 min of stirring at -80 °C, a solution of triisopropyl-borate (20.2 mmol, 4.66 mL) in THF (10 mL) was slowly added over 15 min and the resulting mixture stirred for 30 min. The solution was then allowed to warm slowly to r.t. The mixture was quenched with 40 mL of H2O and washed 3 times with Et2O (75 mL). The aqueous layer was then acidified to pH 6 by addition of 3 M HCl, extracted with EtOAc (5 × 100 mL), and the organic layer was evaporated to give the 2-cyano-3-pyridylboronic acid (1c) as a white powder (yield 65%); mp >220 °C. 1H NMR (400 MHz, CD3OD): δ = 7.62 (dd,
³
J = 4.8 Hz,
³
J = 7.7 Hz, 1 H), 8.09 (dd,
³
J = 7.7 Hz,
4
J = 1.7 Hz, 1 H), 8.67 (dd,
³
J = 4.7 Hz,
4
J = 1.7 Hz, 1 H), 8.82 (br s, 2 H). IR (KBr): 3225, 2260 (CN), 1581, 1563, 1451, 1332, 1195, 1157, 1080, 1038, 772, 637, 559 cm-1.
13a
Fischer FC.
Havinga E.
Recl. Trav. Chim. Pays-Bas
1974,
93:
21
13b
Fuller AA.
Hester HR.
Salo EV.
Stevens EP.
Tetrahedron Lett.
2003,
44:
2935
14
Typical Procedure for Suzuki Cross-Coupling 2, 3, 5a-d.
A three-necked flask, equipped with a septum inlet, a reflux condenser and a thermometer, was degassed with argon and charged with 4-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)nicotinonitrile (4b, 1.6 mmol, 0.36 g), K2CO3 (3.3 mmol, 0.46 g) and Pd(PPh3)4 (0.08 mmol, 91 mg). A degassed solution of 3-bromopyridine (1.5 mmol, 0.15 mL) in a toluene-EtOH mixture (10 mL, 1 mL) was added rapidly through the septum inlet with a syringe. The mixture was heated to 100 °C for 24 h (TLC monitoring) under stirring. The flask was poured in H2O (30 mL), and extracted with EtOAc (3 × 50 mL). The organic layer was then washed with brine, dried with MgSO4, filtered, and evaporated. [3,4′]Bipyridinyl-3′-carbonitrile was isolated as a white powder 5b (yield 58%) by column chromatography using EtOAc-cyclohexane (1:1) and EtOAc as eluants; mp 180 °C. 1H NMR (400 MHz, CDCl3): δ = 7.49-7.53 (m, 2 H), 8.01 (ddd,
³
J = 8.0 Hz
4
J = 2.4 Hz
4
J = 1.7 Hz, 1 H), 8.79 (dd,
³
J = 4.8 Hz
4
J = 1.7 Hz, 1 H), 8.83 (d,
4
J = 2.4 Hz, 1 H), 8.89 (d,
³
J = 5.1 Hz, 1 H), 9.02 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 108.69, 116.05, 123.51, 123.55, 123.67, 131.57, 135.73, 148.85, 151.24, 153.20, 154.06. IR (KBr): 3429, 3093, 3015, 2228 (CN), 1721, 1593, 1585, 1471, 1418, 1400, 1195, 1013, 864, 809, 745, 711, 643, 543 cm-1. HRMS: m/z calcd: 182.0718; found: 182.0719.
15
Watanabe T.
Miyaura N.
Suzuki A.
Synlett
1991,
207
16a
Mattesson DS.
J. Organomet. Chem.
1999,
581:
51
16b
Urawa Y.
Naka H.
Miyazawa M.
Souda S.
Ogura K.
J. Organomet. Chem.
2002,
653:
269
17a
Wong KT.
Chien YY.
Liao YL.
Lin CC.
Chou MY.
Leung MK.
J. Org. Chem.
2002,
67:
1041
17b
Chan DMT.
Monaco KL.
Li R.
Bonne D.
Clark CG.
Lam PYS.
Tetrahedron Lett.
2003,
44:
3863
17c
Kristensen J.
Lysén M.
Vedso P.
Begtrup M.
Org. Lett.
2001,
3:
1435
18
Typical Procedure for the Synthesis of ortho
-Cyano-pyridylboronic Esters 4a-d.
A solution of the 2-cyano-3-pyridylboronic acid (1c, 4.3 mmol, 1 g), pinacol (4.3 mmol, 0.52 g) and MgSO4 (3 g) in toluene (25 mL) was stirred overnight (TLC monitoring). The suspension was filtered and the resulting solution washed with brine (3 × 15 mL). Evaporation of the organic layer gave the pure product 4c as yellow crystals (yield 82%); mp 66 °C. 1H NMR (400 MHz, CDCl3): δ = 1.39 (s, 12 H), 7.48 (dd,
³
J = 4.8 Hz,
³
J = 7.8 Hz, 1 H), 8.18 (dd,
³
J = 7.8 Hz,
4
J = 1.7 Hz, 1 H), 8.75 (dd,
³
J = 4.7 Hz,
4
J = 1.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 24.80, 85.33, 117.19, 125.71, 143.41, 152.31. IR (KBr): 3053, 2979, 2238 (CN), 1582, 1557, 1458, 1361, 1145, 1130, 1074, 1041, 962, 837, 778, 662, 561 cm-1. Anal. Calcd for C12H15BN2O2 (%): C, 62.65; H, 6.57; N, 12.18. Found: C, 62.41; H, 6.88; N, 11.74.
19 Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, publication number: CCDC 288826.