References and Notes
-
1a
Webb KS.
Levy D.
Tetrahedron Lett.
1995,
36:
5117
-
1b
Voisin AS.
Bouillon A.
Lancelot JC.
Rault S.
Tetrahedron
2005,
61:
1427
-
1c
Brown Ripin DH.
Cai W.
Brenek SJ.
Tetrahedron Lett.
2000,
41:
5817
- 2
Thiebes C.
Prakash GHS.
Petasis NA.
Olah GA.
Synlett
1998,
141
-
3a
Prakash GKS.
Panja C.
Mathew T.
Surampundi V.
Petasis NA.
Olah GA.
Org. Lett.
2004,
6:
2205
-
3b
Salzbrunn S.
Simon J.
Prakash GKS.
Petasis NA.
Olah GA.
Synlett
2000,
1485
-
4a
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
-
4b
Tyrrell E.
Brookes P.
Synthesis
2003,
469
-
5a
Chan DMT.
Monaco KL.
Wang RP.
Winters MP.
Tetrahedron Lett.
1998,
39:
2933
-
5b
Lam PYS.
Clark CG.
Saubern S.
Adams J.
Chan DMT.
Combs A.
Tetrahedron Lett.
1998,
39:
2941
-
5c
Lam PYS.
Vincent G.
Clark CG.
Deudon D.
Jadhav PK.
Tetrahedron Lett.
2001,
42:
3415
-
5d
Herradura PS.
Pendola KA.
Guy RK.
Org. Lett.
2000,
2:
2019
-
6a
Parry PR.
Wang C.
Batsanov AS.
Bryce MR.
Tarbit B.
J. Org. Chem.
2002,
67:
7541
-
6b
Sutherland S.
Gallagher T.
J. Org. Chem.
2003,
68:
3352
-
6c
Thompson AE.
Hughes G.
Batsanev AS.
Bryce MR.
Parry PR.
Tarbit B.
J. Org. Chem.
2005,
70:
388
-
6d
Cioffi CL.
Spencer WT.
Richards JJ.
Herr RJ.
J. Org. Chem.
2004,
69:
2210
- 7
Cai D.
Larsen RD.
Reider PJ.
Tetrahedron Lett.
2002,
43:
4285
-
8a
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
2885
-
8b
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
3323
-
8c
Bouillon A.
Lancelot JC.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
4369
- 9
Bouillon A.
Voisin AS.
Robic A.
Lancelot JC.
Collot V.
Rault S.
J. Org. Chem.
2003,
68:
10178
- 10
Cailly T.
Fabis F.
Lemaître S.
Bouillon A.
Rault S.
Tetrahedron Lett.
2005,
46:
135
- 11
Hansen HM.
Lysén M.
Begtrup M.
Kristensen J.
Tetrahedron
2005,
61:
9955
-
13a
Fischer FC.
Havinga E.
Recl. Trav. Chim. Pays-Bas
1974,
93:
21
-
13b
Fuller AA.
Hester HR.
Salo EV.
Stevens EP.
Tetrahedron Lett.
2003,
44:
2935
- 15
Watanabe T.
Miyaura N.
Suzuki A.
Synlett
1991,
207
-
16a
Mattesson DS.
J. Organomet. Chem.
1999,
581:
51
-
16b
Urawa Y.
Naka H.
Miyazawa M.
Souda S.
Ogura K.
J. Organomet. Chem.
2002,
653:
269
-
17a
Wong KT.
Chien YY.
Liao YL.
Lin CC.
Chou MY.
Leung MK.
J. Org. Chem.
2002,
67:
1041
-
17b
Chan DMT.
Monaco KL.
Li R.
Bonne D.
Clark CG.
Lam PYS.
Tetrahedron Lett.
2003,
44:
3863
-
17c
Kristensen J.
Lysén M.
Vedso P.
Begtrup M.
Org. Lett.
2001,
3:
1435
12
Typical Procedure for Obtention of ortho
-Cyano-pyridylboronic Acids 1a-d.
To a stirred solution under N2 of 2,2,6,6-tetramethyl-piperidine (20.2 mmol, 3.4 mL) in THF (40 mL) was added at -30 °C 2.5 M n-BuLi (19.2 mmol, 7.7 mL). The solution was allowed to reach 0 °C, kept under stirring during 15 min and cooled to -80 °C. 2-Cyanopyridine (9.6 mmol, 1 g) in THF (20 mL) was slowly added to the mixture over 15 min. After 30 min of stirring at -80 °C, a solution of triisopropyl-borate (20.2 mmol, 4.66 mL) in THF (10 mL) was slowly added over 15 min and the resulting mixture stirred for 30 min. The solution was then allowed to warm slowly to r.t. The mixture was quenched with 40 mL of H2O and washed 3 times with Et2O (75 mL). The aqueous layer was then acidified to pH 6 by addition of 3 M HCl, extracted with EtOAc (5 × 100 mL), and the organic layer was evaporated to give the 2-cyano-3-pyridylboronic acid (1c) as a white powder (yield 65%); mp >220 °C. 1H NMR (400 MHz, CD3OD): δ = 7.62 (dd,
³
J = 4.8 Hz,
³
J = 7.7 Hz, 1 H), 8.09 (dd,
³
J = 7.7 Hz,
4
J = 1.7 Hz, 1 H), 8.67 (dd,
³
J = 4.7 Hz,
4
J = 1.7 Hz, 1 H), 8.82 (br s, 2 H). IR (KBr): 3225, 2260 (CN), 1581, 1563, 1451, 1332, 1195, 1157, 1080, 1038, 772, 637, 559 cm-1.
14
Typical Procedure for Suzuki Cross-Coupling 2, 3, 5a-d.
A three-necked flask, equipped with a septum inlet, a reflux condenser and a thermometer, was degassed with argon and charged with 4-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)nicotinonitrile (4b, 1.6 mmol, 0.36 g), K2CO3 (3.3 mmol, 0.46 g) and Pd(PPh3)4 (0.08 mmol, 91 mg). A degassed solution of 3-bromopyridine (1.5 mmol, 0.15 mL) in a toluene-EtOH mixture (10 mL, 1 mL) was added rapidly through the septum inlet with a syringe. The mixture was heated to 100 °C for 24 h (TLC monitoring) under stirring. The flask was poured in H2O (30 mL), and extracted with EtOAc (3 × 50 mL). The organic layer was then washed with brine, dried with MgSO4, filtered, and evaporated. [3,4′]Bipyridinyl-3′-carbonitrile was isolated as a white powder 5b (yield 58%) by column chromatography using EtOAc-cyclohexane (1:1) and EtOAc as eluants; mp 180 °C. 1H NMR (400 MHz, CDCl3): δ = 7.49-7.53 (m, 2 H), 8.01 (ddd,
³
J = 8.0 Hz
4
J = 2.4 Hz
4
J = 1.7 Hz, 1 H), 8.79 (dd,
³
J = 4.8 Hz
4
J = 1.7 Hz, 1 H), 8.83 (d,
4
J = 2.4 Hz, 1 H), 8.89 (d,
³
J = 5.1 Hz, 1 H), 9.02 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 108.69, 116.05, 123.51, 123.55, 123.67, 131.57, 135.73, 148.85, 151.24, 153.20, 154.06. IR (KBr): 3429, 3093, 3015, 2228 (CN), 1721, 1593, 1585, 1471, 1418, 1400, 1195, 1013, 864, 809, 745, 711, 643, 543 cm-1. HRMS: m/z calcd: 182.0718; found: 182.0719.
18
Typical Procedure for the Synthesis of ortho
-Cyano-pyridylboronic Esters 4a-d.
A solution of the 2-cyano-3-pyridylboronic acid (1c, 4.3 mmol, 1 g), pinacol (4.3 mmol, 0.52 g) and MgSO4 (3 g) in toluene (25 mL) was stirred overnight (TLC monitoring). The suspension was filtered and the resulting solution washed with brine (3 × 15 mL). Evaporation of the organic layer gave the pure product 4c as yellow crystals (yield 82%); mp 66 °C. 1H NMR (400 MHz, CDCl3): δ = 1.39 (s, 12 H), 7.48 (dd,
³
J = 4.8 Hz,
³
J = 7.8 Hz, 1 H), 8.18 (dd,
³
J = 7.8 Hz,
4
J = 1.7 Hz, 1 H), 8.75 (dd,
³
J = 4.7 Hz,
4
J = 1.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 24.80, 85.33, 117.19, 125.71, 143.41, 152.31. IR (KBr): 3053, 2979, 2238 (CN), 1582, 1557, 1458, 1361, 1145, 1130, 1074, 1041, 962, 837, 778, 662, 561 cm-1. Anal. Calcd for C12H15BN2O2 (%): C, 62.65; H, 6.57; N, 12.18. Found: C, 62.41; H, 6.88; N, 11.74.
19 Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, publication number: CCDC 288826.