RSS-Feed abonnieren
DOI: 10.1055/s-2005-922780
Synthesis of Novel Phenylnaphthyl Phosphines and their Applications to Pd-Catalyzed Intramolecular Amidation
Publikationsverlauf
Publikationsdatum:
16. Dezember 2005 (online)
Abstract
Novel phenylnaphthyl phosphines were prepared and applied to the Pd-catalyzed intramolecular amidation. Both ligands gave good to excellent yields in the synthesis of five-, six-, and seven-membered rings from halo-amides and carbamates.
Key words
phenylnaphthyl phosphine - Pd catalysis - C-N bond formation - intramolecular amidation - Suzuki-Miyaura cross-coupling
- For reviews on transition-metal catalyzed carbon-heteroatom bond formations, see:
-
1a
Prim D.Andrioletti B.Rose-Munch F.Rose E.Couty F. Tetrahedron 2004, 60: 3325 -
1b
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
1c
Prim D.Campagne J.-M.Joseph D.Andrioletti B. Tetrahedron 2002, 58: 2041 -
1d
Muci AR.Buchwald SL. Top. Curr. Chem. 2002, 219: 131 -
1e
Yang BH.Buchwald SL. J. Organomet. Chem. 1999, 576: 125 -
1f
Wolfe JP.Wagaw S.Marcoux J.-F.Buchwald SL. Acc. Chem. Res. 1998, 31: 805 -
1g
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2046 -
1h
Hartwig JF. Synlett 1997, 329 -
2a
He F.Foxman BM.Snider BB. J. Am. Chem. Soc. 1998, 120: 6417 -
2b
Morita S.Kitano K.Matsubara J.Ohtani T.Kawano Y.Otsubo K.Uchida M. Tetrahedron 1998, 54: 4811 -
3a
Beccalli EM.Broggini G.Paladino G.Zoni C. Tetrahedron 2005, 61: 61 -
3b
Ferreira ICFR.Queiroz M.-JRP.Kirsch G. Tetrahedron 2002, 58: 7943 -
3c
López-Rodríguez ML.Benhamú B.Ayala D.Rominguera JL.Murcia M.Ramos JA.Viso A. Tetrahedron 2000, 56: 3245 -
4a
Wolfe JP.Tomori H.Sadighi JP.Yin J.Buchwald SL. J. Org. Chem. 2000, 65: 1158 -
4b
Old DW.Wolfe JP.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 9722 - 5 For a review on BINAP, see:
Noyori R.Takaya H. Acc. Chem. Res. 1990, 23: 345 - 6 For a review on MOP, see:
Hayashi T. Acc. Chem. Res. 2000, 33: 354 - 7
Yoshikawa S.Odaira J.Kitamura Y.Bedekar AV.Furuta T.Tanaka K. Tetrahedron 2004, 60: 2225 - Our group has used the structurally related optically active 8,8′-disubstituted 1,1′-binaphthyls as chiral modifiers. For examples, see:
-
8a
Fuji K.Ohnishi H.Moriyama S.Tanaka K.Kawabata T.Tsubaki K. Synlett 2000, 351 -
8b
Tanaka K.Nuruzzaman M.Yoshida M.Asakawa N.Yang X.-S.Tsubaki K.Fuji K. Chem. Pharm. Bull. 1999, 47: 1053 -
8c
Fuji K.Yang X.-S.Ohnishi H.Hao X.-J.Obata Y.Tanaka K. Tetrahedron: Asymmetry 1999, 10: 3243 -
8d
Tanaka K.Asakawa N.Nuruzzaman M.Fuji K. Tetrahedron: Asymmetry 1997, 8: 3637 - For reviews on the Suzuki-Miyaura cross-coupling, see:
-
10a
Suzuki A. J. Organomet. Chem. 1999, 576: 147 -
10b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
12a
Yang BH.Buchwald SL. Org. Lett. 1999, 1: 35 -
12b
Wolfe JP.Rennels RA.Buchwald SL. Tetrahedron 1996, 52: 7525 -
15a
Baillie C.Xiao J. Tetrahedron 2004, 60: 4159 -
15b
Baillie C.Chen W.Xiao J. Tetrahedron Lett. 2001, 42: 9085 - Both η 1- and η 2-coordinations of arenes to Pd(0) were previously proposed as plausible explanations for the excellent properties of electron-rich biaryl phosphines:
-
17a For η
1-coordination, see:
Reid SM.Boyle RC.Mague JT.Fink MJ. J. Am. Chem. Soc. 2003, 125: 7816 -
17b For η
2-coordination, see:
Yin J.Rainka MP.Zhang X.-X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 1162
References and Notes
The ligand 6 could be purified by column chromatography under atmospheric conditions. Spectral data of 6: 1H NMR: δ = 3.37 (s, 3 H), 6.67-6.65 (m, 1 H), 6.86 (dd, J = 0.8, 7.0 Hz, 1 H), 7.16-7.11 (m, 5 H), 7.27-7.21 (m, 9 H), 7.37-7.31 (m, 2 H), 7.74-7.44 (m, 1 H), 7.74 (dd, J = 0.8, 8.0 Hz, 1 H). MS (FAB): m/z = 419 (M + H)+. HRMS: m/z calcd for C29H24OP (M + H)+, 419.1564; found, 419.1531.
11Spectral data of 11: 1H NMR: δ = 3.48 (s, 3 H), 6.65-6.60 (m, 1 H), 6.83-6.70 (m, 4 H), 7.30-7.00 (m, 13 H), 7.50-7.45 (m, 1 H), 7.88 (d, J = 7.9 Hz, 2 H). MS (FAB): m/z = 419 (M + H)+. HRMS: m/z calcd for C29H24OP (M + H)+, 419.1564; found, 419.1524.
13Intramolecular Amidations; General Procedure To a mixture of 6 (9.8 mg, 23 µmol) and Pd(OAc)2 (6.3 mg, 28 µmol) in 1,4-dioxane (3.0 mL) was added 12 (142 mg, 0.47 mmol) and Cs2CO3 (228 mg, 0.70 mmol) at r.t. The reaction was stirred at 100 °C for 3.5 h, EtOAc and H2O were added, and the resulting mixture was filtered through a pad of Celite. The organic layer was separated, washed with brine, dried over MgSO4, and then evaporated to give a residue, which was purified by column chromatography (SiO2; hexane-EtOAc, 3:2) to afford 13 (88 mg, 85%).
14In a previous report, the cyclization of 12 was conducted with Pd(OAc)2 (3.3 mol%), (dl)-MOP (5.0 mol%), and K2CO3 (1.4 equiv) in toluene at 100 °C for 36 h to give 13 in 82%; see, ref. 12a.
16The starting material 12 was recovered in 72% yield. No reductive dehalogenation of 12 as a side reaction was observed.
18Attempts to synthesize the eight-, nine-, and ten-membered lactams using 23, 24, and 25 as the starting materials, respectively, were unsuccessful (Figure
[2]
).
In every case only the starting materials were recovered.