Subscribe to RSS
DOI: 10.1055/s-2005-922791
A Broadened Scope for the Use of Hydrazones as Neutral Nucleophiles in the Presence of H-Bonding Organocatalysts
Publication History
Publication Date:
23 December 2005 (online)
Abstract
Using thioureas as H-bonding organocatalysts, nitroalkenes can be activated for the conjugate addition of hydrazones as neutral nucleophiles. Formaldehyde derivatives react at the azomethine carbon as expected, whereas hydrazones from enolizable aldehydes behave as ene-hydrazines and react at the α-carbon instead. Ionic liquids were found to decrease the reaction times considerably compared to commonly used solvents, whereas alternative activation by Lewis acids resulted in decomposition of reactants.
Key words
catalysis - ionic liquids - hydrazones - nucleophiles - addition reactions
-
1a
Kamitori Y.Hojo M.Masuda R.Fujitani T.Ohara S.Yokoyama T. J. Org. Chem. 1988, 53: 129 -
1b
Kamitori Y.Hojo M.Masuda R.Yoshida T.Ohara S.Yamada K.Yoshikawa N. J. Org. Chem. 1988, 53: 519 -
2a
Brehme R.Nikolajewski HE. Tetrahedron 1969, 25: 1159 -
2b
Brehme R.Nikolajewski HE. Tetrahedron Lett. 1982, 23: 1131 -
2c
Brehme R.Reck G.Schulz B.Redeglia R. Synthesis 2003, 1620 - 3
Lassaletta JM.Fernández R. Synlett 2000, 1228 - 4
Lassaletta JM.Fernández R.Gasch C.Vázquez J. Tetrahedron 1996, 52: 9143 ; and references therein -
5a
Fernández R.Martín-Zamora E.Pareja C.Lassaletta JM. J. Org. Chem. 2001, 66: 5201 -
5b
Fernández R.Martín-Zamora E.Pareja C.Vázquez J.Díez E.Monge A.Lassaletta JM. Angew. Chem. Int. Ed. 1998, 37: 3428 - 6
Enders D.Vázquez J.Raabe G. Eur. J. Org. Chem. 2000, 6: 893 -
7a
Vázquez J.Prieto A.Fernández R.Enders D.Lassaletta JM. Chem. Commun. 2002, 498 -
7b
Lassaletta JM.Vázquez J.Prieto A.Fernández R.Raabe G.Enders D. J. Org. Chem. 2003, 68: 2698 - 8
Vázquez J.Cristea E.Díez E.Lassaletta JM.Prieto A.Fernández R. Tetrahedron 2005, 61: 4115 -
9a
Lassaletta JM.Fernández R.Martín-Zamora E.Díez E. J. Am. Chem. Soc. 1996, 118: 7002 -
9b
Díez E.Fernández R.Gasch C.Lassaletta JM.Llera JM.Martín-Zamora E.Vázquez J. J. Org. Chem. 1997, 62: 5144 -
10a
Fernández R.Gasch C.Lassaletta JM.Llera J.-M.Vázquez J. Tetrahedron Lett. 1993, 34: 141 -
10b
Enders D.Syrig R.Raabe G.Fernández R.Gasch C.Lassaletta JM.Llera JM. Synthesis 1996, 48 - 11
Dixon DJ.Tillman AL. Synlett 2005, 2635 -
12a
Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062 -
12b
Sigman MS.Jacobsen EN. J. Am. Chem. Soc. 1998, 120: 4901 -
13a
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 -
13b
Wittkopp A.Schreiner PR. Chem.-Eur. J. 2003, 9: 407 -
14a
Dessole G.Herrera RP.Ricci A. Synlett 2004, 2374 -
14b
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 - 17
Lassaletta JM.Fernández R.Martín-Zamora E.Pareja C. Tetrahedron Lett. 1996, 37: 5787 - 18
Yadav JS.Reddy BVS.Basak AK.Narsaiah AV. Tetrahedron Lett. 2003, 44: 2217 - 20
Fujim K.Node M. Synlett 1991, 603
References and Notes
Experimental Procedure.
To a mixture of thiourea 1 (0.02 mmol, 10 mg) and nitroalkene (0.1 mmol) in CH2Cl2 (100 µL) was added hydrazone (0.15 mmol). The reaction was then stirred for the time stated at ambient temperature. The product was isolated as an oil using column chromatography (EtOAc-hexane, 1:4). All compounds gave satisfactory analytical and spectral data.
Typical data for representative compounds:
Compound 4ca (19.2 mg, 77%): Major diastereomer: 1H NMR (300 MHz, CDCl3): δ = 0.85 (3 H, d, J = 6.87 Hz, CH3), 2.62 (1 H, m, J = 6.87, 7.11, 10.2 Hz, CH3CH), 2.75 [6 H, s, N(CH3)2], 3.41 (1 H, dt-like, J = 5.27, 10.20 PhCH), 4.53 (1 H, dd, J = 9.87, 12.9 Hz, CHNO2), 4.76 (1 H, dd, J = 5.07, 12.9 Hz, CHNO2), 6.39 (1 H, d, J = 7.11, HC=N), 7.08-7.37 (5 H, m, Ph). 13C NMR (75 MHz, CDCl3): δ = 17.96, 41.14, 43.18, 48.79, 79.94, 127.9, 128.3, 129.1, 136.7, 138.7. ESI-MS: m/z = 272 [M + Na+]. HRMS: m/z calcd for C13H19N3O2: 249.1477; found: 249.1475.
Compound 4de (24.7 mg, 82%): Major diastereomer: 1H NMR (300 MHz, CDCl3): δ = 2.80 [6 H, s, N(CH3)2], 3.89 (1 H, dd, J = 5.84, 10.3 Hz, PhCH), 4.26 (1 H, m, CH), 4.77 (1 H, dd, J = 8.96, 12.9, CHNO2), 4.95 (1 H, dd, J = 5.01, 12.9, CHNO2), 5.83 (1 H, m, furyl), 6.08 (1 H, m, furyl), 6.62 (1 H, d, J = 5.84 Hz, HC=N), 7.05-7.38 (5 H, m, Ph and 1H, furyl). 13C NMR (75 MHz, CDCl3): δ = 41.99, 43.11, 51.07, 77.25, 108.8, 110.3, 127.2, 128.3, 128.4, 129.3, 139.6, 142.1, 151.2. ESI-MS: m/z = 324 [M + Na+]. HRMS: m/z calcd for C16H19N3O3: 301.1426; found: 301.1424.
Formation of adducts derived from attack by the azo-methine carbon was not observed for any of the studied hydrazones 2b-f.
19Other H-bonding catalysts such as tartaric acid or mandelic acid were unsuccessfully tried. Furthermore, no decomposition of hydrazones or nitroalkenes in presence of thiourea 1 was observed after one week in CH2Cl2.