Semin Neurol 2005; 25(4): 384-395
DOI: 10.1055/s-2005-923533
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Arm Function after Stroke: From Physiology to Recovery

John W. Krakauer1
  • 1The Neurological Institute, Columbia University Medical Center, New York, New York
Further Information

Publication History

Publication Date:
08 December 2005 (online)

ABSTRACT

There are varying degrees of spontaneous improvement in arm paresis over the first 6 months after stroke. The degree of improvement at 6 months is best predicted by the motor deficit at 1 month despite standard rehabilitative interventions in the ensuing 5 months. Animal studies indicate that the loss of fine motor control, especially individuation of the digits, is due to interruption of monosynaptic corticomotoneuronal connections. Spasticity occurs because of loss of cortical modulatory control on descending brain stem pathways and spinal segmental circuits but is not a major cause of motor dysfunction. Quantitative studies of reaching movements in patients suggest that arm paresis consists of higher-order motor planning and sensorimotor integration deficits that cannot be attributed to weakness or presence of synergies. Cortical stimulation experiments in animals and functional imaging studies in humans indicate that motor learning and recovery after stroke share common brain reorganization mechanisms. Rehabilitation techniques enhance learning-related changes after stroke and contribute to recovery. Future research will benefit from using quantitative methods to characterize the motor impairment after stroke and by applying concepts in motor learning to devise more physiologically based rehabilitation techniques.

REFERENCES

  • 1 Gresham D E, Duncan P W, Stason W B. Post-stroke rehabilitation. Clinical Practice Guideline No. 16, Vol. 95-0662 1995
  • 2 Duncan P W, Goldstein L B, Matchar D, Divine G W, Feussner J. Measurement of motor recovery after stroke: outcome assessment and sample size requirements.  Stroke. 1992;  23 1084-1089
  • 3 Wade D T, Langton-Hewer R, Wood V A, Skilbeck C E, Ismall H M. The hemiplegic arm after stroke: measurement and recovery.  J Neurol Neurosurg Psychiatry. 1983;  46 521-524
  • 4 Sunderland A, Tinson D, Bradley L. Arm function after stroke: an evaluation of grip strength as a measure of recovery and a prognostic indicator.  J Neurol Neurosurg Psychiatry. 1989;  52 1267-1272
  • 5 Kwakkel G, Kollen B J, van der Grond J, Prevo A J. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke.  Stroke. 2003;  34 2181-2186
  • 6 Gladstone D J, Danells C J, Black S E. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties.  Neurorehabil Neural Repair. 2002;  16 232-240
  • 7 Feys H, Hetebrij J, Wilms G, Dom R, De Weerdt W. Predicting arm recovery following stroke: value of site of lesion.  Acta Neurol Scand. 2000;  102 371-377
  • 8 Shelton F N, Reding M J. Effect of lesion location on upper limb motor recovery after stroke.  Stroke. 2001;  32 107-112
  • 9 Wenzelburger R, Kopper F, Frenzel A et al.. Hand coordination following capsular stroke.  Brain. 2005;  128 64-74
  • 10 Lawrence D G, Kuypers H GJM. The functional organization of the motor system in the monkey. I: the effects of bilateral pyramidal lesions.  Brain. 1968;  91 1-14
  • 11 Lawrence D G, Kuypers H GJM. The functional organization of the motor system in the monkey. II: The effects of lesions of the descending brain-stem pathways.  Brain. 1968;  91 15-36
  • 12 Beck C H, Chambers W W. Speed, accuracy and strength of forelimb movement after unilateral pyramidotomy in rhesus monkeys.  J Comp Physiol Psychol. 1970;  70 1-22
  • 13 Goldberger M E. Restitution of function in the CNS: the pathologic grasp in Macaca mulatta.  Exp Brain Res. 1972;  15 79-96
  • 14 Hepp-Reymond M C, Trouche E, Wiesendanger M. Effects of unilateral and bilateral pyramidotomy on a conditioned rapid precision grip in monkeys (Macaca fascicularis).  Exp Brain Res. 1974;  21 519-527
  • 15 Ashby P, Andrews C, Knowles L, Lance J W. Pyramidal and extrapyramidal control of tonic mechanisms in the cat.  Brain. 1972;  95 21-30
  • 16 Ropper A H, Fisher C M, Kleinman G M. Pyramidal infarction in the medulla: a cause of pure motor hemiplegia sparing the face.  Neurology. 1979;  29 91-95
  • 17 Shadmehr R, Wise S P. The computational neurobiology of reaching and pointing: a foundation for motor learning. In: Sejnowski TJ, Poggio TA Computational Neuroscience. Cambridge, MA; The MIT Press 2005
  • 18 Morasso P. Spatial control of arm movements.  Exp Brain Res. 1981;  42 223-227
  • 19 Ghez C, Krakauer J W, Sainburg R, Ghilardi M F. Spatial representations and internal models of limb dynamics in motor learning. In: Gazzaniga M The New Cognitive Neurosciences. 2nd ed. Cambridge, MA; The MIT Press 2000: 501-514
  • 20 Hogan N. The mechanics of multi-joint posture and movement control.  Biol Cybern. 1985;  52 315-331
  • 21 Gordon J, Ghilardi M F, Cooper S E, Ghez C. Accuracy of planar reaching movements. II: systematic extent errors resulting from inertial anisotropy.  Exp Brain Res. 1994;  99 112-130
  • 22 Hollerbach M J, Flash T. Dynamic interactions between limb segments during planar arm movement.  Biol Cybern. 1982;  44 67-77
  • 23 Ghez C, Gordon J, Ghilardi M F. Impairments of reaching movements in patients without proprioception. II: Effects of visual information on accuracy.  J Neurophysiol. 1995;  73 361-372
  • 24 Sainburg R L, Ghilardi M F, Poizner H, Ghez C. The control of limb dynamics in normal subjects and patients without proprioception.  J Neurophysiol. 1995;  73 820-835
  • 25 Mussa-Ivaldi F A. Modular features of motor control and learning.  Curr Opin Neurobiol. 1999;  9 713-717
  • 26 Twitchell T E. The restoration of motor function following hemiplegia in man.  Brain. 1950;  74 443-480
  • 27 Brunnstrom S. Movement Therapy in Hemiplegia. New York; Harper & Row 1970
  • 28 Rothwell J. Control of Human Voluntary Movement. 2nd ed. London; Chapman & Hill 1994
  • 29 Tang A, Rymer W Z. Abnormal force-EMG relations in paretic limbs of hemiparetic human subjects.  J Neurol Neurosurg Psychiatry. 1981;  44 690-698
  • 30 Bourbonnais D, Noven S V, Carey K M, Rymer W Z. Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects.  Brain. 1989;  112 85-102
  • 31 Dewald J PA, Pope P S, Given J D, Buchanan T SR. Abnormal muscle coactivation pattern during isometric torque generation at the elbow and shoulder in hemiparetic subjects.  Brain. 1995;  118 495-510
  • 32 Levin M F. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis.  Brain. 1996;  119 281-293
  • 33 Beer R F, Dewald J P, Rymer W Z. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics.  Exp Brain Res. 2000;  131 305-319
  • 34 Brouwer B, Ashby P. Corticospinal projections to upper and lower limb spinal motoneurons in man.  Electroencephalogr Clin Neurophysiol. 1990;  76 509-519
  • 35 Devanne H, Cohen L G, Kouchtir-Devanne N, Capaday C. Integrated motor cortical control of task-related muscles during pointing in humans.  J Neurophysiol. 2002;  87 3006-3017
  • 36 Capaday C. The integrated nature of motor cortical function.  Neuroscientist. 2004;  10 207-220
  • 37 Kunesch E, Binkofski F, Steinmetz H, Freund H J. The pattern of motor deficits in relation to the site of stroke lesions.  Eur Neurol. 1995;  35 20-26
  • 38 Lance J W. The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture.  Neurology. 1980;  30 1303-1313
  • 39 Rymer W Z, Houk J C, Crago P E. Mechanisms of the clasp-knife reflex studied in an animal model.  Exp Brain Res. 1979;  37 93-113
  • 40 Fellows S J, Ross H F, Thilmann A F. The limitations of the tendon jerk as a marker of pathological stretch reflex activity in human spasticity.  J Neurol Neurosurg Psychiatry. 1993;  56 531-537
  • 41 Bobath B. Adult Hemiplegia: Evaluation and Treatment. London; Heinemann 1990
  • 42 O'Dwyer N J, Ada L, Neilson P D. Spasticity and muscle contracture following stroke.  Brain. 1996;  119 1737-1749
  • 43 Sommerfeld D K, Eek E U, Svensson A K, Holmqvist L W, von Arbin M H. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations.  Stroke. 2004;  35 134-139
  • 44 Thilmann A F, Fellows S J, Garms E. The mechanism of spastic muscle hypertonus: variation in reflex gain over the time course of spasticity.  Brain. 1991;  114 233-244
  • 45 Brodal A. Self-observations and neuro-anatomical considerations after a stroke.  Brain. 1973;  96 675-694
  • 46 Colebatch J G, Gandevia S C. The distribution of muscular weakness in upper motor neuron lesions affecting the arm.  Brain. 1989;  112 749-763
  • 47 Jones R D, Donaldson I M, Parkin P J. Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction.  Brain. 1989;  112 113-132
  • 48 Fisk J D, Goodale M A. The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit.  Exp Brain Res. 1988;  72 425-435
  • 49 Haaland K Y, Harrington D L. Hemispheric control of the initial and corrective components of aiming movements.  Neuropsychologia. 1989;  27 961-969
  • 50 Bernspang B, Fisher A G. Differences between persons with right or left cerebral vascular accident on the assessment of motor and process skills.  Arch Phys Med Rehabil. 1995;  76 1144-1151
  • 51 Winstein C J, Pohl P S. Effects of unilateral brain damage on the control of goal-directed hand movements.  Exp Brain Res. 1995;  105 163-174
  • 52 Haaland K Y, Prestopnik J L, Knight R T, Lee R R. Hemispheric asymmetries for kinematic and positional aspects of reaching.  Brain. 2004;  127 1145-1158
  • 53 Yarosh C A, Hoffman D S, Strick P L. Deficits in movements of the wrist ipsilateral to a stroke in hemiparetic subjects.  J Neurophysiol. 2004;  92 3276-3285
  • 54 Kim S G, Ashe J, Hendrich K et al.. Functional magnetic resonance imaging of motor cortex hemispheric asymmetry and handedness.  Science. 1993;  261 615-617
  • 55 Cramer S C, Finklestein S P, Schaechter J D, Bush G, Rosen B R. Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements.  J Neurophysiol. 1999;  81 383-387
  • 56 Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini P M. Follow-up of interhemispheric differences of motor evoked potentials from the “affected” and “unaffected” hemispheres in human stroke.  Brain Res. 1998;  803 1-8
  • 57 Shimizu T, Hosaki A, Hino T et al.. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke.  Brain. 2002;  125 1896-1907
  • 58 Butefisch C M, Netz J, Wessling M, Seitz R J, Homberg V. Remote changes in cortical excitability after stroke.  Brain. 2003;  126 470-481
  • 59 Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys.  J Neurophysiol. 1996;  75 2144-2149
  • 60 Liu Y, Rouiller E M. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys.  Exp Brain Res. 1999;  128 149-159
  • 61 Frost S B, Barbay S, Friel K M, Plautz E J, Nudo R J. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery.  J Neurophysiol. 2003;  89 3205-3214
  • 62 Carmichael S T. Plasticity of cortical projections after stroke.  Neuroscientist. 2003;  9 64-75
  • 63 Fridman E A, Hanakawa T, Chung M, Hummel F, Leiguarda R C, Cohen L G. Reorganization of the human ipsilesional premotor cortex after stroke.  Brain. 2004;  127 747-758
  • 64 Hallett M. Plasticity of the human motor cortex and recovery from stroke.  Brain Res Brain Res Rev. 2001;  36 169-174
  • 65 Thirumala P, Hier D B, Patel P. Motor recovery after stroke: lessons from functional brain imaging.  Neurol Res. 2002;  24 453-458
  • 66 Krakauer J W. Functional imaging of motor recovery after stroke: remaining challenges.  Curr Neurol Neurosci Rep. 2004;  4 42-46
  • 67 Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of changes following use and injury.  Neuroscientist. 2004;  10 129-141
  • 68 Butefisch C M. Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke.  Neuroscientist. 2004;  10 163-173
  • 69 Ward N S. Functional reorganization of the cerebral motor system after stroke.  Curr Opin Neurol. 2004;  17 725-730
  • 70 Chollet F, DiPiero V, Wise R J, Brooks D J, Dolan R J, Frackowiak R S. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography.  Ann Neurol. 1991;  29 63-71
  • 71 Weiller C, Chollet F, Friston K J, Wise R J, Frackowiak R S. Functional reorganization of the brain in recovery from striatocapsular infarction in man.  Ann Neurol. 1992;  31 463-472
  • 72 Weiller C, Ramsay S C, Wise R J, Friston K J, Frackowiak R S. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction.  Ann Neurol. 1993;  33 181-189
  • 73 Cramer S C, Nelles G, Benson R R et al.. A functional MRI study of subjects recovered from hemiparetic stroke.  Stroke. 1997;  28 2518-2527
  • 74 Ward N S, Brown M M, Thompson A J, Frackowiak R S. Neural correlates of outcome after stroke: a cross-sectional fMRI study.  Brain. 2003;  126 1430-1448
  • 75 Marshall R S, Perera G M, Lazar R M, Krakauer J W, Constantine R C, DeLaPaz R L. Evolution of cortical activation during recovery from corticospinal tract infarction.  Stroke. 2000;  31 656-661
  • 76 Feydy A, Carlier R, Roby-Brami A et al.. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation.  Stroke. 2002;  33 1610-1617
  • 77 Ward N S, Brown M M, Thompson A J, Frackowiak R S. Neural correlates of motor recovery after stroke: a longitudinal fMRI study.  Brain. 2003;  126 2476-2496
  • 78 Rickard T C. Methodological issues in functional magnetic resonance imaging studies of plasticity following brain injury. In: Levin HS, Graftman J Cerebral Reorganization of Function After Brain Damage. New York; Oxford University Press 2000: 304-317
  • 79 Reddy H, Narayanan S, Arnoutelis R et al.. Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis.  Brain. 2000;  123 2314-2320
  • 80 Pantano P, Mainero C, Iannetti G D et al.. Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis.  Neuroimage. 2002;  17 1837-1843
  • 81 Krakauer J W, Radoeva P D, Zarahn E et al.. Hypoperfusion without stroke alters motor activation in the opposite hemisphere.  Ann Neurol. 2004;  56 796-802
  • 82 Luft A R, Waller S, Forrester L et al.. Lesion location alters brain activation in chronically impaired stroke survivors.  Neuroimage. 2004;  21 924-935
  • 83 Johansen-Berg H, Rushworth M F, Bogdanovic M D, Kischka U, Wimalaratna S, Matthews P M. The role of ipsilateral premotor cortex in hand movement after stroke.  Proc Natl Acad Sci USA. 2002;  99 14518-14523
  • 84 Fisher C M. Concerning the mechanism of recovery in stroke hemiplegia.  Can J Neurol Sci. 1992;  19 57-63
  • 85 Ago T, Kitazono T, Ooboshi H et al.. Deterioration of pre-existing hemiparesis brought about by subsequent ipsilateral lacunar infarction.  J Neurol Neurosurg Psychiatry. 2003;  74 1152-1153
  • 86 Butefisch C M, Davis B C, Wise S P et al.. Mechanisms of use-dependent plasticity in the human motor cortex.  Proc Natl Acad Sci USA. 2000;  97 3661-3665
  • 87 Karni A, Meyer G, Jezzard P, Adams M M, Turner R, Ungerleider L G. Functional MRI evidence for adult motor cortex plasticity during motor skill learning.  Nature. 1995;  377 155-158
  • 88 Karni A, Meyer G, Rey-Hipolito C et al.. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex.  Proc Natl Acad Sci USA. 1998;  95 861-868
  • 89 Plautz E J, Milliken G W, Nudo R J. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning.  Neurobiol Learn Mem. 2000;  74 27-55
  • 90 Pascual-Leone A, Nguyet D, Cohen L G, Brasil-Neto J P, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills.  J Neurophysiol. 1995;  74 1037-1045
  • 91 van Mier H, Tempel L W, Perlmutter J S, Raichle M E, Petersen S E. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.  J Neurophysiol. 1998;  80 2177-2199
  • 92 Krakauer J W, Ghilardi M F, Mentis M et al.. Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study.  J Neurophysiol. 2004;  91 924-933
  • 93 Winstein C J, Merians A S, Sullivan K J. Motor learning after unilateral brain damage.  Neuropsychologia. 1999;  37 975-987
  • 94 Takahashi C D, Reinkensmeyer D J. Hemiparetic stroke impairs anticipatory control of arm movement.  Exp Brain Res. 2003;  149 131-140
  • 95 Cramer S C, Chopp M. Recovery recapitulates ontogeny.  Trends Neurosci. 2000;  23 265-271
  • 96 Kleim J A, Hogg T M, VandenBerg P M, Cooper N R, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning.  J Neurosci. 2004;  24 628-633
  • 97 Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury.  J Neurosci. 2004;  24 1245-1254
  • 98 Kwakkel G, Kollen B J, Wagenaar R C. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial.  J Neurol Neurosurg Psychiatry. 2002;  72 473-479
  • 99 Nudo R J, Wise B M, SiFuentes F, Milliken G W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.  Science. 1996;  272 1791-1794
  • 100 Reinkensmeyer D J, Emken J L, Cramer S C. Robotics, motor learning, and neurologic recovery.  Annu Rev Biomed Eng. 2004;  6 497-525
  • 101 Cauraugh J, Light K, Kim S, Thigpen M, Behrman A. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation.  Stroke. 2000;  31 1360-1364
  • 102 Schmidt R A, Lee T D. Motor Control and Learning. Champaign, IL; Human Kinetics Publishers 1999
  • 103 Mark V W, Taub E. Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities.  Restor Neurol Neurosci. 2004;  22 317-336
  • 104 Shea C H, Kohl R M. Composition of practice: influence on the retention of motor skills.  Res Q Exerc Sport. 1991;  62 187-195
  • 105 Page S J, Gater D R, Bach Y RP. Reconsidering the motor recovery plateau in stroke rehabilitation.  Arch Phys Med Rehabil. 2004;  85 1377-1381
  • 106 Taub E, Miller N E, Novack T A et al.. Technique to improve chronic motor deficit after stroke.  Arch Phys Med Rehabil. 1993;  74 347-354
  • 107 van der Lee J H, Wagenaar R C, Lankhorst G J, Vogelaar T W, Deville W L, Bouter L M. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial.  Stroke. 1999;  30 2369-2375
  • 108 Dromerick A W, Edwards D F, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?.  Stroke. 2000;  31 2984-2988

John W KrakauerM.D. 

The Neurological Institute, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032