RSS-Feed abonnieren
DOI: 10.1055/s-2005-923582
Synthetic Access to the First Spirocyclopropyl Iminosugar
Publikationsverlauf
Publikationsdatum:
23. Dezember 2005 (online)

Abstract
The synthesis of the first spirocyclopropyl iminosugar has been achieved in six steps and 13% overall yield from commercially available 2,3,5-tri-O-benzyl-d-arabinose. The synthesis is based on an efficient two-step reaction involving the titanium-mediated aminocyclopropanation of 2,3,5-tri-O-benzyl-4-O-methanesulfonyl-d-arabinononitrile and the subsequent cyclization resulting from in situ nucleophilic attack of the so-formed amine. Addition of a Lewis acid during the cyclopropanation-cyclization sequence greatly improved the yields.
Key words
azasugars - glycosidases - metallacycle - nitriles - spiro compounds - titanium
- 1a
Asano N.Kato A.Miyauchi M.Kizy H.Kameda Y.Watson AA.Nash RJ.Fleet GWJ. J. Nat. Prod. 1998, 61: 625 - 1b
Takebayashi M.Hiranuma S.Kanie Y.Kajimoto T.Kanie O.Wong C.-H. J. Org. Chem. 1999, 64: 5280 - 1c
Wrodnigg TM.Withers SG.Stütz AE. Bioorg. Med. Chem. Lett. 2001, 11: 1063 - 1d
Yamashita T.Yasuda K.Kizu H.Kameda Y.Watson AA.Nash RJ.Fleet GWJ.Asano N. J. Nat. Prod. 2002, 65: 1875 - 1e
Behr J.-B.Guillerm G. Tetrahedron: Asymmetry 2003, 111 - 1f
Tschamber T.Gessier F.Dubost E.Newsome J.Tarnus C.Kohler J.Neuburger M.Streith J. Bioorg. Med. Chem. 2003, 11: 3559 - 1g
Carmona AT.Popowycz F.Gerber-Lemaire S.Rodriguez-Garcia E.Schütz C.Vogel P.Robina I. Bioorg. Med. Chem. 2003, 11: 4897 - 1h
Behr J.-B.Chevrier C.Defoin A.Tarnus C.Streith J. Tetrahedron 2003, 59: 543 - 1i
Chevrier C.LeNouen D.Neuburger M.Defoin A.Tarnus C. Tetrahedron Lett. 2004, 45: 5363 - 1j
Wrodnigg TM.Diness F.Gruber C.Häusler H.Lundt I.Rupitz K.Steiner AJ.Stütz AE.Tarling CA.Withers SG.Wölfler H. Bioorg. Med. Chem. 2004, 12: 3485 - 1k
Lysek R.Vogel P. Helv. Chim. Acta 2004, 87: 3167 - 1l
Singh S.Han H. Tetrahedron Lett. 2004, 45: 6349 - 1m
Asano N.Ikeda K.Yu L.Kato A.Takebayashi K.Adachi I.Kato I.Ouchi H.Takahata H.Fleet GWJ. Tetrahedron: Asymmetry 2005, 16: 223 - 1n
Kim JH.Curtis-Long MJ.Seo WD.Lee JH.Lee BW.Yoon YJ.Kang KY.Park KH. Bioorg. Med. Chem. 2005, 15: 4282 - 1o
Badorrey R.Cativiela C.Diaz-de-Villegas MD.Diez R.Galvez JA. Synlett 2005, 1734 - 2
Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond
Stütz AE. Wiley-VCH; Weinheim: 1999. - 3a
Mehta A.Zitzmann N.Rudd P.Block T.Dwek R. FEBS Lett. 1998, 430: 17 - 3b Iminosugars: Recent Insights into their Bioactivity and Potential as Therapeutic Agents, Martin, O. R., Compain, P., Eds. Curr. Top. Med. Chem. 2003, 3:
- 3c
Fiaux H.Popowycz F.Favre S.Schütz C.Vogel P.Gerber-Lemaire S.Juillerat-Jeanneret L. J. Med. Chem. 2005, 48: 4237 - 3d
Kim JH.Curtis-Long MJ.Seo WD.Ryu YB.Yang MS.Park KH. J. Org. Chem. 2005, 70: 4082 - 4
Legler G.Korth A.Berger A.Ekhart C.Gradnig G.Stütz AE. Carbohydr. Res. 1993, 250: 67 - 5
Karpas A.Fleet GWJ.Dwek RA.Petursson S.Namgoong SK.Ramsden NG.Jacob GS.Rademacher TW. Proc. Natl. Acad. Sci. U.S.A. 1988, 85: 9229 - 6a
Bogdanovitch T.Esel D.Kelly LM.Bozdogan B.Credito K.Lin G.Smith K.Ednie LM.Hoellman DB.Appelbaum PC. Antimicrob. Agents Chemother. 2005, 49: 3325 - 6b
Dhople AM.Namba K. J. Chemother. 2003, 15: 47 - 7a
Bertus P.Szymoniak J. Chem. Commun. 2001, 1792 - 7b
Bertus P.Szymoniak J. J. Org. Chem. 2002, 67: 3965 - 7c
Bertus P.Szymoniak J. Synlett 2003, 265 - 7d
Laroche C.Bertus P.Szymoniak J. Tetrahedron Lett. 2003, 44: 2485 - 7e
Bertus P.Szymoniak J. J. Org. Chem. 2003, 68: 7133 - 7f
Laroche C.Harakat D.Bertus P.Szymoniak J. Org. Biomol. Chem. 2005, 3: 3482 - 7g
Gensini M.Kozhushkov SI.Yufit DS.Howard JAK.Es-Sayed M.de Meijere A. Eur. J. Org. Chem. 2002, 2499 - 8
Laroche C.Behr J.-B.Szymoniak J.Bertus P.Plantier-Royon R. Eur. J. Org. Chem. 2005, 5084 - 10a
Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis John Wiley and Sons; New York: 2001. - 10b
Bronislaw P.Bartsch C. J. Org. Chem. 1984, 49: 4076 - 10c
Sajiki H.Hirota K. Tetrahedron 1998, 54: 13981 - 12
Buchanan JG.Lumbard KW.Sturgeon RJ.Thompson DK.Wightman RH. J. Chem. Soc., Perkin Trans. 1 1990, 699
References and Notes
The cis-relationship between the H-4 and H-5 hydrogen atoms was confirmed by NOE experiments on the final product 4. The irradiation of H-4 resulted in a NOE (8.9%) on H-5 (Scheme [2] ).
11Selected data for compound 4: [α]D 20 +45 (c 0.16, H2O). 1H NMR (250 MHz, D2O): δ = 0.55 (m, 1 H, CH 2CH2), 0.68 (m, 3 H, CH 2CH 2), 3.37 (ddd, 1 H, J = 4.7 Hz, J = 6.6 Hz, J = 6.6 Hz, H-5), 3.53 (dd, 1 H, J = 6.6 Hz, J = 11.2 Hz, CH 2OH), 3.60 (d, 1 H, J = 1.6 Hz, H-3), 3.66 (dd, 1 H, J = 6.6 Hz, J = 11.2 Hz, CH 2OH), 4.10 (dd, 1 H, J = 1.6 Hz, J = 4.7 Hz, H-4). 13C NMR (62.5 MHz, D2O): δ = 6.1, 12.2, 45.1, 60.5, 61.3, 78.2, 81.9. HRMS-ESI: m/z calcd for C7H13NO3 + H+: 160.0974; found: 160.0975.
13
Typical Procedure for the Cyclopropanation of Nitrile 14a.
A solution of ethylmagnesium bromide (2.2 mmol, 1 to 2 M in Et2O) was added at -78 °C under argon to a solution of nitrile 14a (0.49 g, 1 mmol) and Ti(Oi-Pr)4 (0.33 mL, 1.1 mmol) in Et2O (25 mL). The yellow solution was stirred for 10 min, and warmed for ca. 1 h to 0
°C. The orange reaction mixture was warmed directly to r.t. (water bath) and after
10 min, BF3·OEt2 (0.25 mL, 2 mmol) was added. After stirring for 1 h, 1 N HCl (3 mL) and Et2O (15 mL) were added. The resulting two clear phases were neutralized with 10% aq
NaOH (10 mL) and the mixture was extracted with Et2O (2 × 30 mL). The combined organic layers were dried (Na2SO4), filtered and concentrated under reduced pressure. The residue was purified by silica
gel flash chromatography (Et2O-Et3N, 98:2) giving 15 (86 mg, 20%) and 11 (182 mg, 42%).
Imine 15: R
f
= 0.58 (Et2O-Et3N, 98:2). 1H NMR (250 MHz, CDCl3): δ = 1.10 (t, 3 H, J = 7.0 Hz, CH2CH
3), 2.30-2.50 (m, 2 H, CH
2CH3), 3.73 (d, 2 H, J = 4.0 Hz, CH
2OBn). 4.21 (m, 2 H), 4.47-4.62 (m, 7 H), 7.20-7.40 (m, 15 H, Ar-H). 13C NMR (62.5 MHz, CDCl3): δ = 10.5, 25.2, 68.7, 70.6, 73.0, 73.1, 73.8, 84.5, 88.4, 127.8-128.9, 138.4, 138.5,
139.0, 179.7.
Cyclopropylamine 11: R
f
= 0.10 (Et2O-Et3N, 98:2). 1H NMR (250 MHz, CDCl3): δ = 0.55-0.72 (m, 3 H, cyclopropyl-H), 0.92 (m, 1 H, cyclopropyl-H), 3.60-3.72
(m, 4 H, H-3, H-5, H-6a,b), 4.11 (dd, 1 H, J = 1.6 Hz, J = 4.3 Hz, H-4), 4.40 (d, 1 H, J
AB
= 12.0 Hz, CH
2Ph), 4.50-4.60 (m, 5 H, -CH
2Ph), 7.20-7.40 (m, 15 H, Ar-H). 13C NMR (62.5 MHz, CDCl3): δ = 8.3, 12.6, 44.6, 60.2, 69.2, 71.7, 72.1, 73.5, 84.7, 86.8, 127.58-128.54, 138.4,
138.4, 138.5. HRMS-ESI: m/z calcd for C28H31NO3 + H+: 430.2382; found: 430.2375.