Subscribe to RSS
DOI: 10.1055/s-2006-921511
© Georg Thieme Verlag Stuttgart · New York
Einfluss der V.A.C.®-Therapie auf Zytokine und Wachstumsfaktoren in Traumatischen Wunden
Influence of V.A.C.®-Therapy on Cyotokines and Growth Factors in Traumatic WoundsPublication History
Publication Date:
30 March 2006 (online)
Zusammenfassung
Ziel der Untersuchung: Klinisch beobachtet man eine beschleunigte Wundheilung bei Patienten, die mit der Vacuum Assisted Closure(V.A.C.®)-Therapie behandelt werden. Die Ursachen dafür auf zellulärer Ebene sind bislang wenig erforscht. In dieser Studie wurden die Serumspiegel proinflammatorischer Interleukine (IL-6, IL-8, IL-10) und Wachstumsfaktoren (VEGF, FGF-2) mit denen in der Wundflüssigkeit verglichen. Basismethodik: Insgesamt wurden 21 Patienten mit traumatischen primär nicht zu verschliessenden Wunden in diese Studie aufgenommen. Die Weichteildefekte (n = 21) wurden primär mit Epigard® als temporäre Wunddeckung behandelt. Während der ersten Second-Look Operation nach 2,0 ± 0,2 Tagen wurde bei 13 Patienten Epigard® für weitere 2,5 ± 0,4 Tage als Weichteildeckung verwendet (Gruppe A), während bei 8 Patienten V.A.C.® zur Wundkonditionierung für 2,4 ± 0,3 Tage zur Anwendung kam (Gruppe B). Insgesamt wurden 428 Serum- und Wundflüssigkeitsproben aus dem ersten und zweiten Verbandwechsel asserviert. Die Zytokine (IL-6, IL-8, IL-10) und Wachstumsfaktoren (VEGF, FGF-2) wurden in Wundflüssigkeit und in den dazu parallel gesammelten Serumproben mittels ELISA bestimmt. Hauptbefunde: Bei allen Zytokinen und Wachstumsfaktoren wurden signifikant niedrigere Serumspiegel im Vergleich zur Wundflüssigkeit gemessen. Beim ersten Verbandwechsel nach Weichteildeckung mittels Epigard® wurden folgende Werte [Mittelwert (SEM)] in den Wundflüssigkeiten ermittelt: IL-6 49 816 (19 889) pg/ml, IL-8 54 (16) ng/ml, IL-10 314 (44) pg/ml, VEGF 4 746 (766) pg/ml, FGF-2 494 (89) pg/ml. Während des zweiten Verbandwechsels fanden sich in Gruppe A folgende Werte: IL-6 7 218 (2 542) pg/ml, IL-8 69 (27) ng/ml, IL-10 261 (58) pg/ml, VEGF 3 551 (661) pg/ml, FGF-2 355 (67) pg/ml. In Gruppe B wurden folgende Werte gemessen: IL-6 16 966 (4 124) pg/ml [p = 0,02], IL-8 223 (91) ng/ml [p = 0,03], IL-10 233 (76) pg/ml [p = 0,38], VEGF 7 490 (1 565) pg/ml [p = 0,01], FGF-2 352 (43) pg/ml [p = 0,48]. Schlussfolgerungen: Die erhöhten Spiegel von IL-6, IL-8 und VEGF in Wunden von V.A.C.® behandelten Patienten könnten die lokale Entzündungsreaktion und anschließende Angiogenese beschleunigen und so mitverantwortlich sein für die beschleunigte Wundheilung.
Abstract
Objective: Clinical observations have shown an accelerated woundhealing in wounds of patients treated by Vacuum Assisted Closure (V.A.C.®)-therapy. The mechanisms of improved wound healing on cellulary level have been hitherto less investigated. In this study the levels of proinflammatory interleukins (IL-6, IL-8, IL-10) and growth factors (VEGF, FGF-2) in serum and wound were monitored. Methods: The study included 21 patients with traumatic wounds that could not be closed during the first surgical intervention. The soft tissue defects (n = 21) were closed temporarily by Epigard®. During the first second-look operation after 2.0 ± 0.2 days in an average, Epigard® was used for another 2.5 ± 0.4 days as temporary soft tissue coverage in 13 patients (group A). In the remaining 8 patients the wound conditioning was done by V.A.C.® for 2.4 ± 0.3 days (group B). A total of 428 samples of serum and wound fluid samples were collected during the first and second look operation. Levels of IL-6, IL-8, IL-10, VEGF and FGF were measured specific by ELISA. Results: In all interleukins and growth factors there were significant lower serum level concentrations compared with those in wound fluids. During the first temporary dressing change after wound coverage with Epigard® the wound samples showed the following levels [Mean (SEM)]: IL-6 49 816 (19 889) pg/ml, IL-8 54 (16) ng/ml, IL-10 314 (44) pg/ml, VEGF 4 746 (766) pg/ml, FGF-2 494 (89) pg/ml. During the second dressing changes we monitored the following levels in group A: IL-6 7 218 (2 542) pg/ml, IL-8 69 (27) ng/ml, IL-10 261 (58) pg/ml, VEGF 3 551 (661) pg/ml, FGF-2 355 (67) pg/ml. In group B the samples of the wound fluid showed the following results: IL-6 16 966 (4 124) pg/ml [p = 0.02], IL-8 223 (91) ng/ml [p = 0.03], IL-10 233 (76) pg/ml [p = 0.38], VEGF 7 490 (1 565) pg/ml [p = 0.01], FGF-2 352 (43) pg/ml [p = 0.48]. Conclusion: The increased local release of IL-6, IL-8 and VEGF in wounds after V.A.C.®-therapy may be involved in the accumulation of neutrophil granulocytes and angiogenesis, which seams to play a crucial role for the accelerated granulation tissue formation after V.A.C.®-therapy compared to wounds treated by Epigard®.
Schlüsselwörter
Vacuum assisted closure - V.A.C.® - Trauma - IL-6, IL-8 - VEGF - Weichteilverletzung
Key words
vacuum assisted closure - V.A.C.® - trauma - IL-6, IL-8 - VEGF - soft tissue injury
Literatur
- 1 Ancelin M, Chollet-Martin S, Herve M A, Legrand C, El Benna J, Perrot-Applanat M. Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocine amplification mechanism. Lab Invest. 2004; 84 502-512
- 2 Argenta L C, Morykwas M J. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997; 38 563-576
- 3 Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998; 392 565-568
- 4 Barbul A, Breslin J R, Woodyard J P, Wasserkrug H L, Efron G. The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann Surg. 1989; 209 479-483
- 5 Barton B E. IL-6: insights into novel biological activities. Clin Immunol Immunopathol. 1997; 85 16-20
- 6 Bonomo S R, Davidson J D, Yu Y, Xia Y, Lin X, Mustoe T A. Hyperbaric oxygen as a signal transducer: upregulation of platelet derived growth factor-beta receptor in the presence of HBO2 and PDGF. Hundersea Hyperbaric Med. 1998; 25 211-216
- 7 Brauchle M, Funk J O, Kind P, Werner S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem. 1996; 271 21793-21797
- 8 Cassatella M A, Meda L, Bonora S, Ceska M, Constantin G. Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med. 1993; 178 2207-2211
- 9 Chodobski A, Chung I, Kozniewska E, Ivanenko T, Chang W, Harrington J F, Duncan J A, Szmydynger-Chodobska J. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Neuroscience. 2003; 122 853-867
- 10 Corral C J, Siddiqui A, Wu L, Farrrell C L, Lyons D, Mustoe T A. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch Surg. 1999; 134 200-205
- 11 Darrington R S, Godden D J, Park M S, Ralston S H, Wallace H M. The effect of hyperoxia on the expression of cytokine mRNA in endothelial cells [abstract]. Biochem Soc Trans. 1997; 25 292
- 12 Deaton P R, McKellar C T, Culbreth R, Veal C F, Cooper J A. Hyperoxia stimulates interleukin-8 release from alveolar macrophages and U937 cells: attenuation by dexamethasone. Am J Physiol. 1994; 267 187-192
- 13 De Waal Malefyt R, Abrams J, Bennett B, Figor C G, de Vries J E. Interleukin 10 (IL-10) inhibits cyytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991; 174 1209-1220
- 14 DiPietro L A, Burdick M, Low Q E, Kunkel S L, Strieter R M. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest. 1998; 101 1693-1698
- 15 Dvorak H F, Brown L F, Detmar M, Dvorak M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am J Pathol. 1995; 146 1029-1039
- 16 Engelhardt E, Toksoy A, Goebeler M, Debus S, Brocker E B, Gillitzer R. Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol. 1998; 153 1849-1860
- 17 Feng J H, Hussain M Z, Constant J, Hunt T K. Angiogenesis in wound healing. Am J Surg Pathol. 1998; 3 1-8
- 18 Ferrara N. Vascular endothelial growth factor. Trends Cardiovasc Med. 1993; 3 244-250
- 19 Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9 669-676
- 20 Fiorentino D F, Zlotnik A, Mosmann T R, Howard M, O'Garra A. IL-10 inhibits cytokine produktion by activated macrophages. J Immunol. 1991; 147 3815-3822
- 21 Fleischmann W, Strecker W, Bombelli M, Kinzl L. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg. 1993; 96 488-492
- 22 Gibson J J, Angeles A P, Hunt T K. Increased oxygen tension potentiates angiogenesis. Surg Forum. 1997; 48 696-699
- 23 Gorman P W, Barnes C L, Fischer T J, McAndrew M P, Moore M M. Soft-tissue reconstruction in severe lower extremity trauma. A review. Clin Orthop. 1989; 243 57-64
- 24 Holzheimer R G, Steinmetz W G. Local and systemic concentrations of pro- and anti-inflammatory cytokines in human wounds. Eur J Med Res. 2000; 5 347-355
- 25 Hunt T K, Pai M P. The effect of varying ambient oxygen tension on wound metabolism and collagen synthesis. Surg Gynecol Obstet. 1972; 135 561-567
- 26 Knighton D R, Hunt T K, Scheuenstuhl H, Halliday B J, Werb Z, Banda M J. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science. 1983; 221 1283-1285
- 27 Kusumanto Y H, Dam W A, Hospers G A, Meijer C, Mulder N H. Platelets and granulocytes, in particular the neutrophils, from important compartments for circulating vascular endothelial growth factor. Angiogenesis. 2003; 6 283-287
- 28 Labler L, Oehy K. Vacuum sealing of problem wounds. Swiss Surg. 2002; 8 266-272
- 29 Leibovich S J, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975; 78 71-100
- 30 Li J, Hampton T, Morgan J P, Simons M. Strech-induced VEGF expression in the heart. J Clin Invest. 1997; 100 18-24
- 31 Luster A D. Chemokines - chemotactic cytokines that mediate inflammation. N Engl J Med. 1998; 338 436-445
- 32 Marx R E, Ehler W J, Tayapongsak P, Pierce L W. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg. 1990; 160 519-524
- 33 Moore K W, O'Garra A, de Waal Malefyt R, Vieira P, Mosmann T. Interleukin-10. Annu Rev Immunol. 1993; 11 165-190
- 34 Morykwas M J, Argenta L C, Shelton-Brown E I, McGuirt W. Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg. 1997; 38 553-562
- 35 Mukaida N, Harada A, Matsushima K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev. 1998; 9 9-23
- 36 Mullner T, Mrkonjic L, Kwasny O, Vecsei V. The use of negative pressure to promote the healing of tissue defects: a clinical trial using the vacuum sealing technique. Br J Plast Surg. 1997; 50 194-199
- 37 Nissen N N, Polverini P J, Koch A E, Volin M V, Gamelli R L, DiPietro L A. Vascular endothelial growth factor mediates angiogenic activity during proliferative phase of wound healing. Am J Pathol. 1998; 152 1445-1452
- 38 Olenius M, Dalsgaard C J, Wickman M. Mitotic activity in expanded human skin. Plast Reconstr Surg. 1993; 91 213-216
- 39 Pufe T, Lemke A, Kurz B, Petersen W, Tillmann B, Grodzinsky A J, Mentlein R. Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol. 2004; 164 185-192
- 40 Quinn T P, Schlueter M, Soifer S J, Gutierrez J A. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2002; 282 897-903
- 41 Rossi D, Zlotnik A. The biology of chemokines and their receptors. Ann Rev Immunol. 2000; 18 217-242
- 42 Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993; 12 1681-1692
- 43 Sato Y, Ohshima T, Kondo T. Regulatory role of endogenous Interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun. 1999; 265 194-199
- 44 Seko Y, Seko Y, Takahashi N, Shibuya M, Yazaki Y. Pulsatile stretch stimulated vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun. 1999; 254 462-465
- 45 Sheikh A Y, Gibson J J, Rollins M D, Hopf H W, Hussain Z, Hunt T K. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000; 135 1293-1297
- 46 Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U. Cyclic mechanical stretching enhances secretion of interleukin-6 in human tendon fibroblast. Knee Surg, Sports Traumatol, Arthrosc. 2001; 9 322-326
- 47 Sumpio B E, Banes A J. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res. 1988; 44 696-701
- 48 Trengove N J, Bielefeldt-Ohmann H, Stacey M C. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen. 2000; 8 13-25
- 49 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83 835-870
- 50 Xiong M, Elson G, Legarda D, Leibovich S J. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate and the inducible nitric oxide synthase pathway. Am J Pathol. 1998; 153 587-598
Dr. med. L. Labler
Klinik für Unfallchirurgie · Universitätsspital Zürich
Rämistrasse 100
8091 Zürich
Schweiz
Phone: +41/44/2 55 11 11
Fax: +41/44/2 55 44 06
Email: ludwig.labler@usz.ch