Plant Biol (Stuttg) 2006; 8(6): 841-848
DOI: 10.1055/s-2006-923929
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Physicochemical Properties of Functional Surfaces in Pitchers of the Carnivorous Plant Nepenthes alata Blanco (Nepenthaceae)

E. V. Gorb1 , S. N. Gorb1
  • 1Evolutionary Biomaterials Group, Department Arzt, Max Planck Institute for Metals Research, Heisenbergstraße 3, 70569 Stuttgart, Germany
Further Information

Publication History

Received: September 30, 2005

Accepted: January 18, 2006

Publication Date:
11 May 2006 (online)

Abstract

Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention.

References

  • 1 An C.-I., Fukusaki E.-I., Kobayashi A.. Plasma-membrane H+-ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco.  Planta. (2001);  212 547-555
  • 2 Adams R. M., Smith G. W.. An S.E.M. survey of the five carnivorous pitcher plant genera.  American Journal of Botany. (1977);  64 265-272
  • 3 Adamson A. W.. Physical Chemistry of Surfaces. New York; John Wiley and Sons (1982)
  • 4 Barthlott W., Porembski S., Seine R., Theisen I.. Karnivoren. Stuttgart; Ulmer (2004)
  • 5 Betz O.. Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae).  Journal of Experimental Biology. (2002);  205 1097-1113
  • 6 Beutel R., Gorb S. N.. Ultrastructure of attachment specialization of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny.  Journal of Zoological Systematics and Evolutionary Research. (2001);  39 177-207
  • 7 Bohn H. F., Federle W.. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface.  PNAS. (2004);  101 14138-14143
  • 8 Busscher H. J., Vanpert A. W. J., Deboer P., Arends J.. The effect of the surface roughening of polymers on measured contact angle of liquids.  Colloids and Surfaces. (1984);  9 319-331
  • 9 Cartmill M.. Climbing. Hildebrand, M., Bramble, D. N., Liem, K. F., and Wake, D. B., eds. Functional Vertebrate Morphology. Cambridge; The Belknap Press (1985): 73-88
  • 10 Dai Z., Gorb S., Schwarz U.. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae).  Journal of Experimental Biology. (2002);  205 2479-2488
  • 11 Edwards P. B.. Do waxes of juvenile Eucalyptus leaves provide protection from grazing insects?.  Australian Journal of Ecology. (1982);  7 347-352
  • 12 Eigenbrode S. D.. Plant surface waxes and insect behaviour. Kerstiens, G., ed. Plant Cuticles - An Integral Functional Approach. Oxford; BIOS (1996): 201-222
  • 13 Eigenbrode S. D., Kabalo N. N., Stoner K. A.. Predation, behavior, and attachment by Chrysoperla plorabunda larvae on Brassica oleracea with different surface waxblooms.  Entomologia Experimentalis et Applicata. (1999);  90 225-235
  • 14 Eisner T., Aneshansley D. J.. Defence by foot adhesion in a beetle (Hemisphaerota cyanea). .  PNAS. (2000);  97 6568-6573
  • 15 Ellison A. M., Gotelli N. J.. Evolutionary ecology of carnivorous plants.  Trends in Ecology and Evolution. (2001);  16 623-629
  • 16 Erbil H. Y.. Surface tension of polymers. Birdi, K. S., ed. CRC Handbook of Surfaces and Colloid Chemistry. Boca Raton; CRC Press Inc. (1997): 265-312
  • 17 Federle W., Rohrseitz K., Hölldobler B.. Attachment forces of ants measured with a centrifuge: better “wax-runners” have a poorer attachment to a smooth surface.  Journal of Experimental Biology. (2000);  203 505-512
  • 18 Federle W., Riehle M., Curtis A. S. G., Full R. J.. An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants.  Integrative and Comparative Biology. (2002);  42 1100-1106
  • 19 Gaume L., Gorb S., Rowe N.. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers.  New Phytologist. (2002);  156 476-489
  • 20 Gaume L., Perret P., Gorb E., Gorb S., Labat J.-J., Rowe N.. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in the three pitfall carnivorous plants.  Artropod Structure and Development. (2004);  33 103-111
  • 21 Gorb S. N.. The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion.  Proceedings of the Royal Society of London, Series B. (1998);  265 62-70
  • 22 Gorb S. N.. Attachment Devices of Insect Cuticle. Dordrecht, Boston, London; Kluwer Academic Publishers (2001)
  • 23 Gorb S. N., Beutel R. G., Gorb E. V., Jiao J., Kastner V., Niederegger S., Popov V., Scherge M., Schwarz U., Vötsch W.. Structural design and biomechanics of friction-based releasable attachment devices in insects.  Integrative and Comparative Biology. (2002);  42 1127-1139
  • 24 Gorb E. V., Gorb S. N.. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces.  Entomologia Experimentalis et Applicata. (2002);  105 13-28
  • 25 Gorb E., Haas K., Henrich A., Enders S., Barbakadse N., Gorb S.. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.  Journal of Experimental Biology. (2005);  208 4651-4662
  • 26 Gorb E., Kastner V., Peressadko A., Arzt E., Gaume L., Rowe N., Gorb S.. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention.  Journal of Experimental Biology. (2004);  207 2947-2963
  • 27 Ishii S.. Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface.  Applied Entomology and Zoology. (1987);  22 222-228
  • 28 Israelachvili J.. Intermolecular and Surface Forces. London; Academic Press (1992)
  • 29 Jebb M., Cheek M.. A skeletal revision of Nepenthes (Nepenthaceae).  Blumea. (1997);  42 1-106
  • 30 Johnson K. L., Kendall K., Roberts A. D.. Surface energy and the contact of elastic bodies.  Proceedings of the Royal Society of London, Series A. (1971);  324 310-313
  • 31 Juniper B. E.. The path to plant carnivory. Juniper, B. E. and Southwood, T. R., eds. Waxes: Insects and the Plant Surface. London; Edward Arnold (1986): 195-318
  • 32 Juniper B. E., Burras J. K.. How pitcher plants trap insects.  New Scientist. (1962);  269 75-77
  • 33 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London; Academic Press (1989)
  • 34 Knoll F.. Über die Ursache des Ausgleitens der Insectenbeine an wachsbedeckten Pflanzentheilen.  Jahrbücher Wissenschaftlicher Botanik. (1914);  54 448-497
  • 35 Kosaki A., Yamaoka R.. Chemical composition of footprints and cuticula lipids of three species of lady beetles.  Japanese Journal of Applied Entomology and Zoology. (1996);  40 47-53
  • 36 Lloyd F. E.. The Carnivorous Plants. New York; The Ronald Press Company (1942)
  • 37 Nachtigall W.. Biological Mechanisms of Attachment. Berlin, Heidelberg, New York; Springer (1974)
  • 38 McFarlane M.. Observations on pitchered insectivorous plants, part II.  Annals of Botany. (1893);  7 401-458
  • 39 Owen T. P., Lennon K. A.. Structure and development of the pitchers from the carnivorous plant Nepenthes alata (Nepenthaceae).  American Journal of Botany. (1999);  86 1382-1390
  • 40 Owens D. K., Wendt R. C.. Estimation of the surface free energy of polymers.  Journal of Applied Polymer Science. (1969);  13 1741-1747
  • 41 Peressadko A. G., Gorb S. N.. Surface profile and friction force generated by insects. Boblan, I. and Bannasch, R., eds. Proceedings of the First International Conference Bionik 2004, Hannover, Germany. Düsseldorf; VDI Verlag (2004): 257-263
  • 42 Riedel M., Eichner A., Jetter R.. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers.  Planta. (2003);  218 87-97
  • 43 Schulze W., Schulze E. D.. Insect capture and growth of the insectivorous Drosera rotundifolia.  Oecologia. (1990);  82 427-429
  • 44 Schulze W., Frommer W. B., Ward J. M.. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. .  The Plant Journal. (1999);  1 637-646
  • 45 Schulze W., Schulze E. D., Pate J. S., Gillison A. N.. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. .  Oecologia. (1997);  112 464-471
  • 46 Stork N. E.. Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae, Coleoptera) on a variety of surfaces.  Journal of Experimental Biology. (1980);  88 91-107
  • 47 Thum M.. The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and Drosera rotundifolia to supplementary feeding.  Oecologia. (1988);  75 427-480
  • 48 Vötsch W., Nicholson G., Müller R., Stierhof Y.-D., Gorb S., Schwarz U.. Chemical composition of the attachment pad secretion of the locust Locusta migratoria.  Insect Biochemistry and Molecular Biology. (2002);  32 1605-1613
  • 49 Way M. J., Murdie G.. An example of varietal resistance of Brussel sprouts.  Annals of Applied Biology. (1965);  56 326-328

E. V. Gorb

Evolutionary Biomaterials Group
Department Arzt
Max Planck Institute for Metals Research

Heisenbergstraße 3

70569 Stuttgart

Germany

Email: o.gorb@mf.mpg.de

Guest Editor: S. Porembski