Plant Biol (Stuttg) 2006; 8(6): 740-747
DOI: 10.1055/s-2006-923956
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Nutrient Limitation and Stoichiometry of Carnivorous Plants

A. M. Ellison1
  • 1Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA
Further Information

Publication History

Received: September 13, 2005

Accepted: January 19, 2006

Publication Date:
11 May 2006 (online)

Abstract

The cost-benefit model for the evolution of carnivorous plants posits a trade-off between photosynthetic costs associated with carnivorous structures and photosynthetic benefits accrued through additional nutrient acquisition. The model predicts that carnivory is expected to evolve if its marginal benefits exceed its marginal costs. Further, the model predicts that when nutrients are scarce but neither light nor water is limiting, carnivorous plants should have an energetic advantage in competition with non-carnivorous plants. Since the publication of the cost-benefit model over 20 years ago, marginal photosynthetic costs of carnivory have been demonstrated but marginal photosynthetic benefits have not. A review of published data and results of ongoing research show that nitrogen, phosphorus, and potassium often (co-)limit growth of carnivorous plants and that photosynthetic nutrient use efficiency is 20 - 50 % of that of non-carnivorous plants. Assessments of stoichiometric relationships among limiting nutrients, scaling of leaf mass with photosynthesis and nutrient content, and photosynthetic nutrient use efficiency all suggest that carnivorous plants are at an energetic disadvantage relative to non-carnivorous plants in similar habitats. Overall, current data support some of the predictions of the cost-benefit model, fail to support others, and still others remain untested and merit future research. Rather than being an optimal solution to an adaptive problem, botanical carnivory may represent a set of limited responses constrained by both phylogenetic history and environmental stress.

References

  • 1 Adamec L.. Mineral nutrition of carnivorous plants: a review.  Botanical Review. (1997 a);  63 273-299
  • 2 Adamec L.. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa.  Aquatic Botany. (1997 b);  59 297-306
  • 3 Adamec L.. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake.  New Phytologist. (2002);  155 89-100
  • 4 Aerts R., Chapin F. S.. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.  Advances in Ecological Research. (2000);  30 1-67
  • 5 Ågren G. I.. The C : N : P stoichiometry of autotrophs - theory and observations.  Ecology Letters. (2004);  7 185-191
  • 6 Albert V. A., Williams S. E., Chase M. W.. Carnivorous plants: phylogeny and structural evolution.  Science. (1992);  257 1491-1495
  • 7 Aldenius J., Carlsson B., Karlsson S.. Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to the nutrient content of the substrate.  New Phytologist. (1983);  93 53-59
  • 8 Bedford B. L., Walbridge M. R., Aldous A.. Patterns of nutrient availability and plant diversity of temperate North American wetlands.  Ecology. (1999);  80 2151-2169
  • 9 Benzing D. H.. The origin and rarity of botanical carnivory.  Trends in Ecology and Evolution. (1987);  2 364-369
  • 10 Brewer J. S.. Effects of competition and litter on a carnivorous plant, Drosera capillaris (Droseraceae).  American Journal of Botany. (1998);  85 1592-1596
  • 11 Brewer J. S.. Effects of competition, litter, and disturbance on an annual carnivorous plant (Utricularia juncea). .  Plant Ecology. (1999 a);  140 159-165
  • 12 Brewer J. S.. Effects of fire, competition and soil disturbances on regeneration of a carnivorous plant (Drosera capillaris). .  American Midland Naturalist. (1999 b);  141 28-42
  • 13 Brewer J. S.. Short term effects of fire and competition on growth and plasticity of the yellow pitcher plant, Sarracenia alata (Sarraceniaceae).  American Journal of Botany. (1999 c);  86 1264-1271
  • 14 Brewer J. S.. Why don't carnivorous pitcher plants compete with non-carnivorous plants for nutrients?.  Ecology. (2003);  84 451-462
  • 15 Chandler G. E., Anderson J. W.. Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit.  New Phytologist. (1976);  76 129-141
  • 16 Chapin C. T., Pastor J.. Nutrient limitation in the northern pitcher plant Sarracenia purpurea.  Canadian Journal of Botany. (1995);  73 728-734
  • 17 Chiang C., Craft C. B., Rogers D. W., Richardson C. J.. Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities.  Aquatic Botany. (2000);  68 61-78
  • 18 Christensen N. L.. The role of carnivory in Sarracenia flava L. with regard to specific nutrient deficiencies.  Journal of the Elisha Mitchell Scientific Society. (1976);  92 144-147
  • 19 Darwin C.. Insectivorous Plants. New York, NY; Appleton and Company (1875)
  • 20 Darwin F.. Experiments on the nutrition of Drosera rotundifolia.  Journal of the Linnean Society - Botany. (1878);  17 17-32
  • 21 Dixon K. W., Pate J. S., Bailey W. J.. Nitrogen nutrition of the tuberous sundew Drosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves.  Australian Journal of Botany. (1980);  28 283-297
  • 22 Ellison A. M., Farnsworth E. J.. The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits.  American Journal of Botany. (2005);  92 1085-1093
  • 23 Ellison A. M., Gotelli N. J.. Evolutionary ecology of carnivorous plants.  Trends in Ecology and Evolution. (2001);  16 623-629
  • 24 Ellison A. M., Gotelli N. J.. Nitrogen availability alters the expression of carnivory in the northern pitcher plant Sarracenia purpurea.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 4409-4412
  • 25 Ellison A. M., Gotelli N. J., Brewer J. S., Cochran-Stafira D. L., Kneitel J., Miller T. E., Worley A. C., Zamora R.. The evolutionary ecology of carnivorous plants.  Advances in Ecological Research. (2003);  33 1-74
  • 26 Englund G., Harms S.. Effects of light and microcrustacean prey on growth and investment in carnivory in Utricularia vulgaris.  Freshwater Biology. (2003);  48 786-794
  • 27 Foulds W.. Nutrient concentrations of foliage and soil in south-western Australia.  New Phytologist. (1993);  125 529-546
  • 28 Garten Jr. C. T.. Multivariate perspectives on the ecology of plant mineral element composition.  American Naturalist. (1978);  112 533-544
  • 29 Gibson T. C.. Competition, disturbance, and the carnivorous plant community in the southeastern United States. PhD dissertation, University of Utah, Salt Lake City, Utah. (1983)
  • 30 Givnish T. J.. On the Economy of Plant Form and Function. Cambridge, UK; Cambridge University Press (1986)
  • 31 Givnish T. J.. Ecology and evolution of carnivorous plants. Abramson, W. G., ed. Plant-Animal Interactions. Toronto, Canada; McGraw-Hill Publishers (1989): 243-290
  • 32 Givnish T. J., Burkhardt E. L., Happel R. E., Weintraub J. D.. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats.  American Naturalist. (1984);  124 479-497
  • 33 Gotelli N. J., Ellison A. M.. Nitrogen deposition and extinction risk in the northen pitcher plant Sarracenia purpurea.  Ecology. (2002);  83 2758-2765
  • 34 Gould S. J., Lewontin R. C.. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.  Proceedings of the Royals Society of London B. (1979);  205 581-598
  • 35 Green S., Green T. L., Heslop-Harrison Y.. Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae), a new carnivorous plant genus.  Botanical Journal of the Linnean Society. (1979);  78 99-116
  • 36 Guisande C., Andrade C., Granado-Lorencio C., Duque S. R., Núñez-Avellaneda M.. Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory.  Aquatic Ecology. (2000);  34 137-142
  • 37 Güsewell S.. N : P ratios in terrestrial plants: variation and functional significance.  New Phytologist. (2004);  164 243-266
  • 38 Jobson R. W., Morris E. C., Burgin S.. Carnivory and nitrogen supply affect the growth of the bladderwort Utricularia uliginosa.  Australian Journal of Botany. (2000);  48 549-560
  • 39 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. New York, NY, USA; Academic Press (1989)
  • 40 Kaminski R.. Studies on the ecology of Aldrovanda vesiculosa L. I. Ecological differentiation of A vesiculosa population under the influence of chemical factors in the habitat.  Ekologia Polska. (1987 a);  35 559-590
  • 41 Kaminski R.. Studies on the ecology of Aldrovanda vesiculosa L. II. Organic substances, physical and biotic factors and the growth and development of A. vesiculosa.  Ekologia Polska. (1987 b);  35 591-609
  • 42 Karlsson P. S., Carlsson B.. Why does Pinguicula vulgaris L. trap insects?.  New Phytologist. (1984);  97 25-30
  • 43 Karlsson P. S., Nordell K. O., Carlsson B. A., Svensson B. M.. The effect on soil nutrient status on prey utilization in four carnivorous plants.  Oecologia. (1991);  86 1-7
  • 44 Karlsson P. S., Pate J. S.. Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorus economy of pygmy species of Drosera.  Oecologia. (1992);  92 8-13
  • 45 Knight S. E.. Costs of carnivory in the common bladderwort, Utricularia macrorhiza.  Oecologia. (1992);  89 348-355
  • 46 Knight S. E., Frost T. M.. Bladder control in Utricularia macrorhiza: lake-specific variation in plant investment in carnivory.  Ecology. (1991);  72 728-734
  • 47 Koerselman W., Meuleman A. F. W.. The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation.  Journal of Applied Ecology. (1996);  33 1441-1450
  • 48 Krafft C. C., Handel S. N.. The role of carnivory in the growth and reproduction of Drosera filiformis and D. rotundifolia.  Bulletin of the Torrey Botanical Club. (1991);  118 12-19
  • 49 Likens G. E., Bormann F. H.. Chemical analyses of plant tissues from the Hubbard Brook ecosystem in New Hampshire.  Bulletin of the Yale University School of Forestry. (1970);  79 1-25
  • 50 Lloyd F. E.. The Carnivorous Plants. New York; Ronald Press (1942)
  • 51 Lüttge U.. Ecophysiology of carnivorous plants. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Physiological Plant Ecology III. New York; Springer (1983): 489-517
  • 52 Méndez M., Karlsson P. S.. Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment.  Oikos. (1999);  86 105-112
  • 53 Méndez M., Karlsson P. S.. Nutrient stoichiometry in Pinguicula vulgaris: nutrient availability, plant size, and reproductive status.  Ecology. (2005);  86 982-991
  • 54 Moran J. A., Moran A. J.. Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher plants (Nepenthes rafflesiana). .  International Journal of Plant Sciences. (1998);  159 996-1001
  • 55 Olde Venterink H., Pieterse N. M., Belgers J. D. M., Wassen M. J., De Ruiter P. C.. N, P, and K budgets along nutrient availability and productivity gradients in wetlands.  Ecological Applications. (2002);  12 1010-1026
  • 56 Olde Venterink H., Wassen M. J., Verkroost A. W. M., De Ruiter P. C.. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands.  Ecology. (2003);  84 2191-2199
  • 57 Otto C.. Effects of prey and turion size on the growth and turion production of the carnivorous bladderwort, Utricularia vulgaris L.  Archiv für Hydrobiologie. (1999);  145 469-478
  • 58 Pate J. S.. Economy of symbiotic nitrogen fixation. Givnish, T. J., ed. On the Economy of Plant Form and Function. Cambridge, UK; Cambridge University Press (1986): 299-325
  • 59 Roberts P. R., Oosting H. J.. Responses of Venus fly trap (Dionaea muscipula) to factors involved in its endemism.  Ecological Monographs. (1958);  28 193-218
  • 60 Schade J. D., Espeleta J. F., Klausmeier C. A., McGroddy M. E., Thomas S. A., Zhang L.. A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand.  Oikos. (2005);  109 40-51
  • 61 Schulze W., Schulze E.-D.. Insect capture and growth of the insectivorous Drosera rotundifolia L.  Oecologia. (1990);  82 427-429
  • 62 Siccama T. G., Bormann F. H., Likens G. E.. The Hubbard Brook ecosystem study: productivity, nutrients, and phytosociology of the herbaceous layer.  Ecological Monographs. (1970);  40 389-402
  • 63 Small E.. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants.  Canadian Journal of Botany. (1972);  50 2227-2233
  • 64 Sorenson D. R., Jackson W. T.. The utilization of paramecia by the carnivorous plant Utricularia gibba.  Planta. (1968);  83 166-170
  • 65 Sterner R. W., Elser J. J.. Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton, NJ, USA; Princeton University Press (2002)
  • 66 Stewart C. N., Nilsen E. T.. Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory.  Canadian Journal of Botany. (1992);  70 1409-1416
  • 67 Stewart C. N., Nilsen E. T.. Responses of Drosera capensis and D. binata var. multifida (Droseraceae) to manipulations of insect availability and soil nutrient levels.  New Zealand Journal of Botany. (1993);  31 385-390
  • 68 Thompson K., Parkinson J. A., Band S. R., Spencer R. E.. A comparative study of leaf nutrient concentrations in a regional herbaceous flora.  New Phytologist. (1997);  136 679-689
  • 69 Thorén L. M., Karlsson P. S.. Effects of supplementary feeding on growth and reproduction of three carnivorous plant species in a subarctic environment.  Journal of Ecology. (1998);  86 501-510
  • 70 Thorén L. M., Karlsson P. S., Tuomi J.. Somatic cost of reproduction in three carnivorous Pinguicula species.  Oikos. (1996);  76 427-434
  • 71 Thorén L. M., Tuomi J., Kämäräinen T., Laine K.. Resource availability affects investment in carnivory in Drosera rotundifolia.  New Phytologist. (2003);  159 507-511
  • 72 Thum M.. The significance of carnivory for the fitness of Drosera in its natural habitat. 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary feeding.  Oecologia. (1988);  75 472-480
  • 73 Wakefield A. E., Gotelli N. J., Wittman S. E., Ellison A. M.. The effect of prey addition on nutrient stoichiometry, nutrient limitation, and morphology of the carnivorous plant Sarracenia purpurea (Sarraceniaceae).  Ecology. (2005);  86 1737-1743
  • 74 Watson A. P., Matthiessen J. N., Springett B. P.. Arthropod associates and macronutrient status of the red-ink sundew (Drosera erythrorhiza Lindl.).  Australian Journal of Ecology. (1982);  7 13-22
  • 75 Weiss T. E. J.. The effects of fire and nutrient availability on the pitcher plant Saracenia flava L. PhD dissertation, University of Georgia, Athens, Georgia. (1980)
  • 76 Wilson S. D.. The growth of Drosera intermedia in nutrient-rich habitats: the role of insectivory and interspecific competition.  Canadian Journal of Botany. (1985);  63 2468-2469
  • 77 Woodwell G. M., Whittaker R. H., Houghton R. A.. Nutrient concentrations in plants in the Brookhaven oak-pine forest.  Ecology. (1975);  56 318-332
  • 78 Wright I. J., Reich P. B., Cornelissen J. H. C., Falster D. S., Garnier E., Hikosaka K., Lamont B. B., Lee W., Oleksyn J., Osada N., Poorter H., Villar R., Warton D. I., Westoby M.. Assessing the generality of global leaf trait relationships.  New Phytologist. (2005);  166 485-496
  • 79 Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J. H. C., Diemer M., Flexas J., Garnier E., Groom P. K., Gulias J., Hikosaka K., Lamont B. B., Lee T., Lee W., Lusk C., Midgley J. J., Navas M.-L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V., Roumet C., Thomas S. C., Tjoelker M. G., Veneklaas E. J., Villar R.. The worldwide leaf economics spectrum.  Nature. (2004);  428 821-827
  • 80 Zamora R., Gómez J. M., Hódar J. A.. Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment.  Oecologia. (1997);  111 443-451
  • 81 Zamora R., Gómez J. M., Hódar J. A.. Fitness responses of a carnivorous plant in contrasting ecological scenarios.  Ecology. (1998);  79 1630-1644

A. M. Ellison

Harvard Forest

324 North Main Street

Petersham, MA 01366

USA

Email: aellison@fas.harvard.edu

Guest Editor: S. Porembski