Plant Biol (Stuttg) 2006; 8(5): 646-652
DOI: 10.1055/s-2006-924106
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Gas Exchange and Growth Responses of Ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana Seedlings to NaCl and Na2SO4

H. Nguyen1 , M. Calvo Polanco1 , J. J. Zwiazek1
  • 1Department of Renewable Resources, University of Alberta, 4-42 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
Weitere Informationen

Publikationsverlauf

Received: October 31, 2005

Accepted: March 10, 2006

Publikationsdatum:
01. Juni 2006 (online)

Abstract

Black spruce (Picea mariana), white spruce (Picea glauca), and jack pine (Pinus banksiana) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and subjected to NaCl and Na2SO4 treatments. The effects of ectomycorrhizas on salt uptake, growth, gas exchange, and needle necrosis varied depending on the tree and fungal species. In jack pine seedlings, ectomycorrhizal (ECM) fungi reduced shoot and root dry weights and in the ECM white spruce, there was a small increase in dry weights. Sodium chloride treatment reduced net photosynthesis and transpiration rates in the three studied tree species. However, NaCl-treated black spruce and jack pine colonized by H. crustuliniforme maintained relatively high photosynthetic and transpiration rates and needle necrosis of NaCl-treated black spruce seedlings was reduced by the ECM fungi. Higher concentrations of Na+ were found in shoots compared with roots of the three examined conifer species. ECM fungi reduced the concentrations of Na+ mainly in the shoots and this reduction was greater in plants treated with NaCl compared with Na2SO4. Shoots contained generally higher concentrations of Cl- compared with roots. In the NaCl-treated black spruce and white spruce, both ECM species significantly reduced Cl- concentrations. Our results point to overall greater phytotoxicity of NaCl compared with Na2SO4 and support our earlier findings which demonstrated beneficial effects of ECM fungi for woody plants exposed to NaCl stress.

References

  • 1 Apostol K. G., Zwiazek J. J.. Hypoxia affects root sodium and chloride concentrations and alters water conductance in salt-treated jack pine (Pinus banksiana) seedlings.  Trees. (2003);  17 251-257
  • 2 Apostol K. G., Zwiazek J. J., MacKinnon M. D.. NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron.  Plant and Soil. (2002);  240 321-329
  • 3 Bois G., Bigras F., Bertrand A., Pichè Y., Fung M. Y. P., Khasa D. P.. Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations.  Mycorrhiza. (2006);  16 99-109
  • 4 Corrêa A., Strasser R. J., Martins-Loução M. A.. Are mycorrhiza always beneficial?.  Plant and Soil. (2006);  279 65-73
  • 5 Dixon R. D., Rao M. V., Garg V. K.. Salt stress affects in vitro growth and in situ symbioses of ECM fungi.  Mycorrhiza. (1993);  3 63-68
  • 6 Dobson M. C.. De-icing salt damage to trees and shrubs. London; Forestry Communication Bulletin (1991): 1-64
  • 7 Eltrop L., Marschner H.. Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. I. Growth and mineral nutrient uptake in plants supplied with different forms of nitrogen.  New Phytologist. (1996);  133 479-486
  • 8 Feng G., Zhang F. S., Li X. L., Tian C. Y., Tang C.. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots.  Mycorrhiza. (2002);  12 185-190
  • 9 Franklin J. A., Zwiazek J. J.. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate.  Physiologia Plantarum. (2004);  120 482-490
  • 10 Franklin J. A., Renault S., Croser C., Zwiazek J. J., MacKinnon M.. Jack pine growth and elemental composition are affected by saline tailings water.  Journal of Environmental Quality. (2002 a);  31 648-653
  • 11 Franklin J. A., Zwiazek J. J., Renault S., Croser C.. Growth and elemental composition of jack pine (Pinus banksiana) seedlings treated with sodium chloride and sodium sulfate.  Trees. (2002 b);  16 325-330
  • 12 Greenway H., Munns R.. Mechanism of salt tolerance in nonhalophytes.  Annual Review of Plant Physiology. (1980);  31 149-190
  • 13 Howat D. R.. Acceptable salinity, sodicity and pH values for boreal forest reclamation. Alberta Environment, Environmental Sciences Division, Edmonton, Alberta, Report No. ESD/LM/00-2. (2000): 1-191
  • 14 Jacoby B.. Mechanisms involved in salt tolerance by plants. Pessarakli, M., ed. Handbook of Plant and Crop Stress. New York; Marcel Dekker (1994): 97-124
  • 15 Jentschke G., Godbold D. L.. Metal toxicity and ectomycorrhizas.  Physiologia Plantarum. (2000);  109 107-116
  • 16 Kernaghan G., Hambling B., Fung M., Khasa D.. In vitro selection of boreal ectomycorrhizal fungi for use in reclamation of saline-alkaline habitats.  Restoration Ecology. (2002);  10 43-51
  • 17 Kuiper P. J. C.. Lipids in grape roots in relation to chloride transport.  Plant Physiology. (1968);  43 1367-1371
  • 18 Martin P. K., Koebner R. M. K.. Sodium and chloride ions contribute synergistically to salt toxicity in wheat.  Biologia Plantarum. (1995);  37 265-271
  • 19 Mason P. A.. Aseptic synthesis of sheathing (ecto-)mycorrhizas. Ingram, D. S. and Helgeson, J. P., eds. Tissue Culture Methods for Plant Pathologists. Oxford; Blackwell Scientific Publishers (1980): 173-178
  • 20 Muhsin T. M., Zwiazek J. J.. Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings.  Plant and Soil. (2002 a);  238 217-225
  • 21 Muhsin T. M., Zwiazek J. J.. Ectomycorrhizas increase apoplastic water transport and hydraulic conductivity in Ulmus americana seedlings.  New Phytologist. (2002 b);  153 153-158
  • 22 Mukerji K. G., Chamola B. P., Singh J.. Mycorrhizal Biology. New York; Kluwer Publishers (2000): 1-336
  • 23 Munns R.. Physiological responses limiting plant growth in saline soils: some dogmas and hypotheses.  Plant, Cell and Environment. (1993);  16 15-24
  • 24 Orcutt C., Nilsen M.. Physiology of Plants under Stress: Soil and Biotic Factors. New York; John Wiley and Sons (1996): 1-683
  • 25 Redfield E. B., Zwiazek J. J.. Drought tolerance characteristics of black spruce (Picea mariana) seedlings in relation to sodium sulfate and sodium chloride injury.  Canadian Journal of Botany. (2002);  80 773-778
  • 26 Renault S., Paton E., Nilsson G., Zwiazek J. J., MacKinnon M. D.. Responses of boreal plants to high salinity oil sands tailings water.  Journal of Environmental Quality. (1999);  28 1957-1962
  • 27 Renault S., Crosser C., Franklin J. A., Zwiazek J. J.. Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings.  Plant and Soil. (2001);  233 261-268
  • 28 Saleh-Rastin N.. Salt tolerance of the mycorrhizal fungus Cenococcum graniforme (Sow.) Ferd.  European Journal of Forest Pathology. (1976);  6 184-187
  • 29 Sinclair W. A., Marx D. H.. Evaluation of plant response to inoculation. Host variables. Schenck, N. C., ed. Methods and Principles of Mycorrhizal Research ,. St. Paul; The American Phytopathological Society (1982): 165-174
  • 30 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. New York; Academic Press (1997): 1-605
  • 31 Thomson B. D., Grove T. S., Malajczuk N., Hardy  StJ. G. E.. The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil.  New Phytologist. (1994);  126 517-524
  • 32 Wood B.. Conifer Seedling Grower Guide. Smoky Lake, AB; Alberta Environmental Protection (1995): 1-73

J. J. Zwiazek

Department of Renewable Resources
University of Alberta

4-42 Earth Sciences Bldg.

Edmonton, AB, T6G 2E3

Canada

eMail: janusz.zwiazek@ualberta.ca

Editor: R. Monson