Plant Biol (Stuttg) 2007; 9(1): 127-135
DOI: 10.1055/s-2006-924544
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Growth Rates, Reproductive Phenology, and Pollination Ecology of Espeletia grandiflora (Asteraceae), a Giant Andean Caulescent Rosette

J. C. Fagua1 , V. H. Gonzalez2
  • 1Department of Biology, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23360, San Juan 00931-3360, Puerto Rico
  • 2Department of Ecology and Evolutionary Biology, Snow Hall, 1460 Jayhawk Blvd, University of Kansas, Lawrence, KS 66045, USA
Further Information

Publication History

Received: December 16, 2005

Accepted: August 5, 2006

Publication Date:
25 October 2006 (online)

Abstract

From March 2001 to December 2002, we studied the reproductive phenology, pollination ecology, and growth rates of Espeletia grandiflora Humb. and Bonpl. (Asteraceae), a giant caulescent rosette from the Páramos of the Eastern Andes of Colombia. Espeletia grandiflora was found to be predominantly allogamous and strongly self-incompatible. Bumblebees (Bombus rubicundus and B. funebris) were the major pollinators of E. grandiflora, although moths, hummingbirds, flies, and beetles also visited flowers. Inflorescence development began in March and continued through August to September. Plants flowered for 30 - 96 days with a peak from the beginning of October through November. The percentage of flowering plants strongly differed among size classes and between both years. Seed dispersal occurred as early as September through May of the following year. The average absolute growth rate for juveniles and adults rate was 7.6 cm/year. Given the scarcity of floral visitors at high altitudes due to climatic conditions, we suggest that even small contributions from a wide range of pollinators might be advantageous for pollination of E. grandiflora. Long-term studies on different populations of E. grandiflora are required to determine if the high growth rates are representative, to quantify the variation in the flowering behavior within and among populations, and to establish if nocturnal pollination is a trait that is exclusive to our population of E. grandiflora.

References

  • 1 Bawa K. S.. Patterns of flowering in tropical plants. Jones C. E. and Little R. J., eds. Handbook of Experimental Pollination Biology. New York; Van Nostrand Reinhold (1983): 394-410
  • 2 Berry P., Calvo R.. Wind pollination, self-incompatibility and altitudinal shifts in pollination systems in the high Andean genus Espeletia (Asteraceae).  American Journal of Botany. (1989);  76 1602-1614
  • 3 Berry P., Calvo R.. An overview of the reproductive biology of Espeletia (Asteraceae) in the Venezuelan Andes. Rundel, P. W., Smith, A. P., and Meinzer, F. C., eds. Tropical Alpine Enviroments. New York; Cambridge University Press (1994): 229-248
  • 4 Cabrera H. M.. Temperaturas bajas y límites altitudinales en ecosistemas de plantas superiores: respuestas de las especies al frío en montañas tropicales y subtropicales.  Revista Chilena de Historia Natural. (1996);  69 309-320
  • 5 Cavalier J. M., Machado J. L., Valencia D., Montoya J., Laignelet A., Hurtado A., Varela A., Mejia C.. Leaf demography and growth rates of Espeletia barclayana Cuatrec. (Compositae), a caulescent rosette in a Colombian Páramo.  Biotropica. (1992);  24 52-63
  • 6 Cruden R. W.. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants.  Evolution. (1977);  31 32-36
  • 7 Dafni A.. Pollination Ecology. Oxford, New York, USA; Oxford University Press (1992)
  • 8 Estrada A., Monasterio M.. Comportamiento reproductivo de una roseta gigante, Espeletia spicata Sch. Bip. (Composite) del Páramo desértico.  Ecotrópicos. (1991);  4 1-17
  • 9 Goldstein G., Meinzer F. C.. Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant.  Plant, Cell and Environment. (1983);  6 649-656
  • 10 Goldstein G., Meinzer F. C., Monasterio M.. Physiological and mechanical factors in relation to size-dependent mortality in an Andean giant rosette species.  Oecologia Plantarum. (1985);  6 263-275
  • 11 Gonzalez V. H., Engel M. S.. The Tropical Andean bee fauna (Insecta: Hymenoptera: Apoidea), with examples from Colombia.  Entomologische Abhandlungen. (2004);  62 65-75
  • 12 Goulson D., Stout J. C.. Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae).  Apidologie. (2001);  32 105-111
  • 13 Guariguata M. R., Azocar A.. Seed bank dynamics and germination ecology in Espeletia timotensis (Compositae), an Andean giant rosette.  Biotropica. (1988);  20 54-59
  • 14 IGAC .Diccionario geográfico de Colombia. Bogotá, Colombia; Instituto Geográfico Agustín Codazzi (1996): 2504 pp
  • 15 Kearns C. A., Inouye D. W.. Fly pollination of Linum lewisii (Linaceae).  American Journal of Botany. (1994);  8 1091-1095
  • 16 Lüttge U.. Physiological Ecology of Tropical Plants. Berlin, Heidelberg, Germany; Springer-Verlag (1997): 384pp
  • 17 Mani M., Saravanan J.. Pollination Ecology and Evolution in Compositae. New Hampshire, USA; Science Publishers, Inc. (1999)
  • 18 Marques M. C., Roper J. J., Salvalaggio A. P. B.. Phenological patterns among plant life-forms in a subtropical forest in southern Brazil.  Plant Ecology. (2004);  173 203-213
  • 19 Medan D.. Reproductive biology of the Andean shrub Discaria nana (Rhamnaceae).  Plant Biology. (2003);  5 94-102
  • 20 Meinzer F., Goldstein G.. Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis.  Ecology. (1985);  66 512-520
  • 21 Monasterio M.. Adaptive strategies of Espeletia in the Andean desert Páramo. Vuilleumier, F. and Monasterio, M., eds. High Altitude Tropical Biogeography. Oxford; Oxford University Press (1986): 49-80
  • 22 Monasterio M., Sarmiento L.. Adaptive radiation of Espeletia in the cold Andean tropics.  Trends in Ecology and Evolution. (1991);  6 387-391
  • 23 Mora-Osejo L.. Contribuciones al estudio comparativo de la conductancia y de la transpiración foliar de especies de plantas de páramo.  Academia de Ciencias Exactas, Físicas y Naturales. (2001);  17 1074-1084
  • 24 Mora-Osejo L., Sturm H.. Estudios ecológicos del páramo y del bosque alto andino, cordillera Oriental de Colombia.  Revista de la Academia de Ciencias Exactas, Físicas y Naturales. (1994);  6 101-121
  • 25 Primack R.. Longevity of individual flowers.  Annual Review of Ecology and Systematics. (1985);  16 15-37
  • 26 Proctor M., Yeo P., Lack A.. The Natural History of Pollination. Portland, USA; Timber Press (1996)
  • 27 Rathcke B., Lacey E. P.. Phenological patterns of terrestrial plants.  Annual Review of Ecology and Systematics. (1985);  16 179-214
  • 28 Rauscher J. T.. Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from nrDNA ITS sequences on the closest relatives of an Andean adaptive radiation.  American Journal of Botany. (2002);  89 1074-1084
  • 29 Richards A.. Plant Breeding Systems. London; George Allen and Unwin (1986)
  • 30 Sarmiento G.. Ecological features of climate in high tropical mountains. Vuilleumier, F. and Monasterio, M., eds. High Altitude Tropical Biogeography. Oxford; Oxford University Press (1986): 11-45
  • 31 Seres A., Ramirez N.. Floral biology and pollination of some monocotyledons of a Venezuelan cloud forest.  Annals of the Missouri Botanical Garden. (1995);  82 61-81
  • 32 Smith A.. Function of dead leaves in Espeletia schultzii (Compositae), an Andean caulescent rosette species.  Biotropica. (1979);  11 43-47
  • 33 Smith A.. Growth and population dynamics of Espeletia (Compositae) in the Venezuelan Andes.  Smithsonian Contributions to Botany. (1981);  48 1-44
  • 34 Sobrevila C.. Variación altitudinal en el sistema reproductivo de Espeletia schultzii en los páramos venezolanos. Simposio de Ecología de la Reproducción e Interacciones Planta-Animal. Anales del IV Congreso Latinoamericano de Botánica, Vol. II. Medellín, Colombia; Unibiblos (1986): 35-54
  • 35 Somanathan H., Borges R. M., Chakravarthy V. S.. Does neighborhood floral display matter? Fruit set in carpenter bee-pollinated Heterophragma quadriloculare and beetle-pollinated Lasiosiphon eriocephalus.  Biotropica. (2004);  36 139-147
  • 36 Sturges H. A.. The choice of a class interval.  Journal of the American Statistical Association. (1926);  21 65-66
  • 37 Sturm H.. Contribución al conocimiento de las relaciones entre los frailejones (Espeletiinae, Asteraceae) y los animales en la región del páramo andino.  Revista de la Academia de Ciencias Exactas, Físicas y Naturales. (1990);  17 668-685
  • 38 Van Schaik C. P., Terborgh J. W., Wright S. J.. The phenology of tropical forests: adaptive significance and consequences for primary consumers.  Annual Review of Ecology and Systematics. (1993);  24 353-377
  • 39 Velez V., Cavalier J., Devia B.. Ecological traits of the tropical treeline species Polylepis quadrijuga (Rosaceae) in the Andes of Colombia.  Journal of Tropical Ecology. (1998);  15 771-787
  • 40 Wright S. J., Calderon O.. Phylogenetic patterns among tropical flowering plants.  Journal of Ecology. (1995);  83 937-948
  • 41 Widén B.. Environmental and genetic influences on phenology and plant size in a perennial herb, Senecio integrifolius.  Canadian Journal of Botany. (1991);  69 209-217

V. H. Gonzalez

Department of Ecology and Evolutionary Biology
University of Kansas

Snow Hall, 1460 Jayhawk Blvd

Lawrence, KS 66045

USA

Email: vhgonza@ku.edu

Editor: M. Ayasse