Abstract
Metformin has been widely used in clinical type 2 diabetes treatment and prevention. The present study was designed to explore the effect on people with a sedentary lifestyle at therapeutic doses. Twenty-two physically-inactive volunteers with normal glucose tolerance were studied. Escalating doses of metformin in low-dose (250 mg), intermediate-dose (500 mg), and high-dose (750 mg) treatment three times per day were administrated into each subject for a three-week treatment period. Fasting plasma glucose, A1C, HOMA-IR for insulin resistance, lipid profile, and plasma β-endorphin-like immunoreactivity (BER) were measured before treatment and weekly at the end of each dosing period. Metformin significantly reduced fasting plasma glucose and HOMA-IR in healthy humans after receiving this treatment at therapeutic doses including low-dose (5 %, 17 %), intermediate-dose (6 %, 25 %) and high-dose treatment (6 %, 21 %). Plasma BER was also increased from 135.46 ± 61.73 pg/ml to 137.52 ± 66.11 pg/ml by low-dosing (p = 0.39), to 139.17 ± 64.08 pg/ml by intermediate-dosing (p = 0.32), and to 149.59 ± 63.32 pg/ml by high-dosing (p < 0.05). Also, serum cholesterol decreased significantly using metformin at therapeutic doses including low-dose (4 %), intermediate-dose (8 %) and high-dose treatment (7 %). However, metformin failed to modify levels of serum HDL-cholesterol and C-reactive protein (CRP) in healthy subjects. Also, the reduction of serum cholesterol by metformin did not correlate to the increase in insulin sensitivity. In conclusion, metformin causes a significant parallel increase in insulin sensitivity and plasma β-endorphin level in human subjects.
Keywords
Metformin - insulin sensitivity - β-endorphin - physical inactivity
References
-
1
Reaven G M, Chen Y D.
Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit?.
Circulation.
1996;
93
1780-1783
-
2
Hawley J A.
Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance.
Diabetes Metab Res Rev.
2004;
20
383-393
-
3
Diabetes Prevention Program Research Group .
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med.
2002;
346
393-403
-
4
Olefsky J M, Garvey W T, Henry R R, Brillon D, Matthaei S, Freidenberg G R.
Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes.
Am J Med.
1988;
85
86-105
-
5
Cheng J T, Liu I M, Hsu C F.
Rapid induction of insulin resistance in opioid mu-receptor knock-out mice.
Neurosci Lett.
2003;
339
139-142
-
6
Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T.
Infusion of β-endorphin improves insulin resistance in fructose-fed rats.
Horm Metab Res.
2004;
36
571-577
-
7
Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T.
Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats.
Diabetes Metab Res Rev.
2005;
21
75-182
-
8
Inzucchi S E, Maggs D G, Spollett G R, Page S L, Rife F S, Walton V, Shulman G I.
Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus.
N Engl J Med.
1998;
338
867-872
-
9
Hundal R S, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi S E, Schumann W C, Petersen K F, Landau B R, Shulman G I.
Mechanism by which metformin reduces glucose production in type 2 diabetes.
Diabetes.
2000;
49
2063-2069
-
10
Stumvoll M, Nurjhan N, Periello G, Dailey G, Gerich J E.
Metabolic effects of metformin in non-insulin dependent diabetes mellitus.
N Engl J Med.
1995;
333
550-554
-
11
Nestler J E, Jakubowicz D J, Evans W S, Pasquali R.
Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome.
N Engl J Med.
1998;
338
1876-1880
-
12
Vandermolen D T, Ratts V S, Evans W S, Stovall D W, Kauma S W, Nestler J E.
Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone.
Fertil Steril.
2001;
75
310-315
-
13
Glueck C J, Fontaine R N, Wang P, Subbiah M T, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy T M, Lang J E, McCullough P.
Metformin reduces weight, centripetal obesity, insulin, leptin, and low density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30.
Metabolism.
2001;
50
856-861
-
14
Kay J P, Alemzadeh R, Langley G, D'Angelo L, Smith P, Holshouser S.
Beneficial effects of metformin in normoglycemic morbidly obese adolescents.
Metabolism.
2001;
50
1457-1461
-
15
De Jager J, Kooy A, Lehert P, Bets D, Wulffele M G, Teerlink T, Scheffer P G, Schalkwijk C G, Donker A J, Stehouwer C D.
Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial.
J Intern Med.
2005;
257
100-109
-
16
Charles M A, Morange P, Eschwege E, Andre P, Vague P, Juhan-Vague I.
Effect of weight change and metformin on fibrinolysis and the von Willebrand factor in obese nondiabetic subjects: the BIGPRO1 Study. Biguanides and the Prevention of the Risk of Obesity.
Diabetes Care.
1998;
21
1967-1972
-
17
Charles M A, Eschwege E, Grandmottet P, Isnard F, Cohen J M, Bensoussan J L, Berche H, Chapiro O, Andre P, Vague P, Juhan-Vague I, Bard J M, Safar M.
Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial.
Diabetes Metab Res Rev.
2000;
16
2-7
-
18
Iannello S, Camuto M, Cavaleri A, Milazzo P, Pisano M G, Bellomia D, Belfiore F.
Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids.
Diabetes, Obesity & Metabolism.
2004;
6
8-15
-
19
Binnert C, Seematter G, Tappy L, Giusti V.
Effect of metformin on insulin sensitivity and insulin secretion in female obese patients with normal glucose tolerance.
Diabetes & Metabolism.
2003;
29
125-132
-
20
Freemark M, Bursey D.
The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes.
Pediatrics.
2001;
107
E55
-
21
Chen J J, Huang L H.
Development and verification of validity and reliability of the IPAQ Taiwan version.
Int J Behavioral Medicine.
2004;
11
141
-
22
Robert F, Fendri S, Hary L, Lacroix C, Andrejak M, Lalau J D.
Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects.
Diabetes Metab.
2003;
29
279-283
-
23
Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
Diabetologia.
1985;
28
412-419
-
24
Dowse G K, Gareeboo H, Zimmet P Z, Alberti K G, Tuomilehto J, Fareed D, Brissonnette L G, Finch C F.
High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians.
Diabetes.
1990;
39
390-396
-
25
Kriska A M, La Porte R E, Pettitt D J, Charles M A, Nelson R G, Kuller L H, Bennett P H, Knowler W C.
The association of physical activity with obesity, fat distribution and glucose intolerance in Pima Indians.
Diabetologia.
1993;
36
863-869
-
26
Taylor R, Ram P, Zimmet P, Raper L R, Ringrose H.
Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji.
Diabetologia.
1984;
27
578-582
-
27
Cederholm J, Wibell L.
Glucose tolerance and physical activity in a health survey of middle-aged subjects.
Acta Med Scand.
1985;
217
373-378
-
28
Lindgarde F, Saltin B.
Daily physical activity, work capacity and glucose tolerance in lean and obese normoglycaemic middle-aged men.
Diabetologia.
1981;
20
134-138
-
29
Pereira M A, Kriska A M, Joswiak M L, Dowse G K, Collins V R, Zimmet P Z, Gareeboo H, Chitson P, Hemraj F, Purran A, Fareed D.
Physical inactivity and glucose intolerance in the multiethnic island of Mauritius.
Med Sci Sports Exerc.
1995;
27
1626-1634
-
30
Wang J T, Ho L T, Tang K T, Wang L M, Chen Y D, Reaven G M.
Effect of habitual physical activity on age-related glucose intolerance.
J Am Geriatr Soc.
1989;
37
203-209
-
31
Regensteiner J G, Shetterly S M, Mayer E J, Eckel R H, Haskell W L, Baxter J, Hamman R F.
Relationship between habitual physical activity and insulin area among individuals with impaired glucose tolerance. The San Luis Valley Diabetes Study.
Diabetes Care.
1995;
18
490-497
-
32
King D S, Dalsky G P, Staten M A, Clutter W E, Van Houten D R, Holloszy J O.
Insulin action and secretion in endurance-trained and untrained humans.
J Appl Physiol.
1987;
63
2247-2252
-
33
Rodnick K J, Haskell W L, Swislocki A L, Foley J E, Reaven G M.
Improved insulin action in muscle, liver, and adipose tissue in physically trained human subjects.
Am J Physiol.
1987;
253
E489-E495
-
34
Gan S K, Kriketos A D, Ellis B A, Thompson C H, Kraegen E W, Chisholm D J.
Changes in Aerobic Capacity and Visceral Fat but not Myocyte Lipid Levels Predict Increased Insulin Action After Exercise in Overweight and Obese Men.
Diabetes Care.
2003;
26
1706-1713
-
35
Goodpaster B H, Katsiaras A, Kelley D E.
Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity.
Diabetes.
2003;
52
2191-2197
-
36
Hickey M S, Gavigan K E, McCammon M R, Tyndall G L, Pories W J, Israel R G, Houmard J A.
Effects of 7 days of exercise training on insulin action in morbidly obese men.
Clin Exerc Physiol.
1999;
1
24-28
-
37
Hughes V A, Fiatarone M A, Fielding R A, Kahn B B, Ferrara C M, Shepherd P, Fisher E C, Wolfe R R, Elahi D, Evans W J.
Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance.
Am J Physiol Endocrin Metab.
1993;
264
E855-E862
-
38
Bruce C R, Kriketos A D, Cooney G J, Hawley J A.
Dissociation of muscle triglyceride content and insulin action after exercise training in patients with type 2 diabetes.
Diabetolgia.
2004;
47
23-30
-
39
Dela F, Larsen J J, Mikines K J, Ploug T, Petersen L N, Galbo H.
Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training.
Diabetes.
1995;
44
1010-1020
-
40
Kang J, Robertson R J, Hagberg J M, Kelley D E, Goss F L, Da Silva S G, Suminski R R, Utter A C.
Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients.
Diabetes Care.
1996;
19
341-349
-
41
Poirier P, Tremblay A, Broderick T, Catellier C, Tancrede G, Nadeau A.
Impact of moderate aerobic exercise training on insulin sensitivity in type 2 diabetic men treated with oral hypoglycemic agents: is insulin sensitivity enhanced only in nonobese subjects?.
Med Sci Monit.
2002;
8
CR59-CR65
-
42
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman M F, Goodyear L J, Moller D E.
Role of AMP-activated protein kinase in mechanism of metformin action.
J Clin Invest.
2001;
108
1167-1174
-
43
Musi N, Hirshman M F, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson J M, Ljunqvist O, Efendic S, Moller D E, Thorell A, Goodyear L J.
Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes.
Diabetes.
2002;
51
2074-2081
-
44
Bloomgarden Z T.
American Diabetes Association Annual Meeting, 1998. Insulin resistance, exercise, and obesity.
Diabetes Care.
1999;
22
517-522
-
45
Clark D O.
Physical activity efficacy and effectiveness among older adults and minorities.
Diabetes Care.
1997;
20
1176-1182
-
46
Park H, Kaushik V K, Constant S, Prentki M, Przybytkowski E, Ruderman N B, Saha A K.
Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise.
J Biol Chem.
2002;
277
32 571-32 577
-
47
Ruderman N B, Cacicedo J M, Itani S, Yagihashi N, Saha A K, Ye J M, Chen K, Zou M, Carling D, Boden G, Cohen R A, Keaney J, Kraegen E W, Ido Y.
Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes.
Biochem Soc Trans.
2003;
31
202-206
-
48
Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman N B, Cohen R A.
AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells.
J Biol Chem.
2004;
279
47 898-47 905
-
49
Gunton J E, Delhanty P J, Takahashi S, Baxter R C.
Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2.
J Clin Endocrinol Metab.
2003;
88
1323-1332
-
50
Cheng J T, Liu I M, Tzeng T F, Tsai C C, Lai T Y.
Plasma glucose lowering effect of beta-endorphin in streptozotocin-induced diabetic rats.
Horm Metab Res.
2002;
34
570-576
-
51
Su C F, Chang Y Y, Pai H H, Liu I M, Lo C Y, Cheng J T.
Infusion of beta-endorphin improves insulin resistance in fructose-fed rats.
Horm Metab Res.
2004;
36
571-577
-
52
Curry D L, Li C H.
Stimulation of insulin secretion by beta-endorphin (1 - 27 and 1 - 31).
Life Sci.
1987;
40
2053-2058
-
53
Locatelli A, Spotti D, Caviezel F.
The regulation of insulin and glucagon secretion by opiates: a study with naloxone in healthy humans.
Acta Diabetol Lat.
1985;
22
25-31
-
54
Cheng J T, Liu I M, Chi T C, Tzeng T F, Lu F H, Chang C J.
Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats.
Diabetes.
2001;
50
2815-2821
-
55
Liu I M, Chen W C, Cheng J T.
Mediation of beta-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced diabetic rats.
J Pharmacol Exp Ther.
2003;
307
1196-1204
-
56
Cheng J T, Liu I M, Tzeng T F, Chen W C, Hayakawa S, Yamamoto T.
Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats.
Horm Metab Res.
2003;
35
251-258
-
57
Wilcock C, Bailey C J.
Accumulation of metformin by tissues of the normal and diabetic mouse.
Xenobiotica.
1999;
24
49-57
-
58
Ikeda T, Iwata K, Murakami H.
Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine.
Biochem Pharmacol.
2000;
59
887-890
T. J. Wu, MD
Department of Internal Medicine · College of Medicine · National Cheng Kung University
138, Sheng-Li Rd. · Tainan · Taiwan 70101
Telefon: +886(6)235-3535 ext 5387
Fax: +886(6)302-8130 ·
eMail: djwu@mail.ncku.edu.tw