Synlett 2006(4): 0591-0594  
DOI: 10.1055/s-2006-932485
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of γ-Lactam Lignans via Aza-Michael Addition

Matthieu Dorbeca, Jean-Claude Florent*a, Claude Monnereta, Marie-Noëlle Ragerb, Emmanuel Bertounesque*a
a UMR 176 CNRS-Institut Curie, Section de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
Fax: +33(1)2346631; e-Mail: Emmanuel.Bertounesque@curie.fr;
b Département de RMN, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
Further Information

Publication History

Received 20 December 2005
Publication Date:
20 February 2006 (online)

Abstract

The synthesis of γ-lactam lignans from thuriferic acid via Michael addition of substituted anilines under basic conditions, ­followed by lactam ring closure, is described.

    References and Notes

  • 1a Meyers AI. Snyder L. J. Org. Chem.  1993,  58:  36 
  • 1b Rigo B. Fasseur D. Cherepy N. Couturier D. Tetrahedron Lett.  1989,  30:  7057 
  • 2 Nilsson BM. Ringdahl B. Hacksell V. J. Med. Chem.  1990,  33:  580 
  • 3 Bergmann R. Gericke R. J. Med. Chem.  1990,  33:  492 
  • 4a Garvey DS. May PD. Nadzan AM. J. Org. Chem.  1990,  55:  936 
  • 4b Eda NJ. Rae ID. Hearn MTW. Aust. J. Chem.  1991,  44:  891 
  • 5 Braña MF. Garranzo M. de Pascual-Teresa B. Pérez-Castells J. Torres MR. Tetrahedron  2002,  58:  4825 
  • 6 Damour D. Herman F. Labaudinière R. Pantel G. Vuilborgne M. Mignani S. Tetrahedron  1999,  55:  10135 
  • 7a Borthwick AD. Angier SJ. Crame AJ. Exall AM. Haley TM. Hart GJ. Mason AM. Pennell AMK. Weingarten GW. J. Med. Chem.  2000,  43:  4452 
  • 7b MacDonald SJF. Inglis GGA. Bentley D. Dowle MD. Tetrahedron Lett.  2002,  43:  5057 
  • 8 Kleinman EF. Campbell E. Giordano LA. Cohan VL. Jenkinson TH. Cheng JB. Shirley JT. Pettipher ER. Salter ED. Hibbs TA. DiCapua FM. Bordner J. J. Med. Chem.  1998,  41:  266 
  • 9 Popke U. Gross EM. Francke W. Tetrahedron Lett.  1997,  38:  379 
  • 10a Matsumoto N. Tsuchida T. Maruyama M. Kinoshita N. Homma Y. Iinuma H. Sawa T. Hamada M. Takeuchi T. Heida N. Yoshioka T. J. Antibiot.  1999,  52:  269 
  • 10b Kelly TR. Xu D. Martínez G. Wang H. Org. Lett.  2002,  4:  1527 
  • 11 Lin H. Ng FW. Danishefsky SJ. Tetrahedron Lett.  2002,  43:  549 
  • 12a Hanusch-Kompa C. Ugi I. Tetrahedron Lett.  1998,  39:  2725 
  • 12b Short KM. Mjalli AMM. Tetrahedron Lett.  1997,  38:  359 
  • 12c Harriman GCB. Tetrahedron Lett.  1997,  38:  5591 
  • 12d Hulme C. Ma L. Cherrier M.-P. Romano JJ. Morton G. Duquenne C. Salvino J. Labaudinière R. Tetrahedron Lett.  2000,  41:  1883 
  • For a review, see:
  • 13a Horton DA. Bourne GT. Smythe ML. Chem. Rev.  2003,  103:  893 
  • For typical examples, see:
  • 13b Evans BE. Rittle KE. Bock MG. DiPardo RM. Freidinger RM. Whitter WL. Lundell GF. Veber DF. Anderson PS. Chang RSL. Lotti VJ. Cerino DJ. Chen TB. Kling PJ. Kunkel KA. Springler JP. Hirshfield J. J. Med. Chem.  1988,  31:  2235 
  • 13c Mason JS. Morize I. Menard PR. Cheney DL. Hulme C. Labaudinière RF. J. Med. Chem.  1999,  42:  3251 
  • 13d Nicolaou KC. Pfefferkorn JA. Roecker AJ. Cao G.-Q. Barluenga S. Mitchell HJ. J. Am. Chem. Soc.  2000,  122:  9939 
  • 14 The sub-structure, tetrahydronaphthalene, of this system is also a privileged structure, see: Lautens M. Rovis T. Tetrahedron  1999,  55:  8967 
  • Reviews:
  • 15a Ward RS. Nat. Prod. Rep.  1995,  12:  183 
  • 15b Ward RS. Nat. Prod. Rep.  1997,  14:  43 
  • 15c Ward RS. Nat. Prod. Rep.  1999,  16:  75 
  • 16a Larsson O, and Axelsson M. inventors; PCT WO  02/102805. 
  • 16b Girnita A. Girnita L. del Prete F. Bartolazzi A. Larsson O. Axelson M. Cancer Res.  2004,  64:  236 
  • 16c Vasilcanu D. Girnita A. Girnita L. Vasilcanu R. Axelson M. Larsson O. Oncogene  2004,  23:  7854 
  • 16d Menu E. Jernberg-Wiklund H. Stromberg T. De Raeve H. Girnita L. Larsson O. Axelson M. Asosingh K. Nilsson K. Van Camp B. Vanderkerken K. Blood  2006,  107:  655 
  • 16e Stromberg T. Ekman S. Girnita L. Dimberg LY. Larsson O. Axelson M. Lennartsson J. Hellman U. Carlson K. Osterborg A. Vanderkerken K. Nilsson K. Jernberg-Wiklund H. Blood  2006,  107:  669 
  • 17a Kadow JF. Vyas DM. Doyle TW. Tetrahedron Lett.  1989,  30:  3299 
  • 17b Kadow JF, and Vyas DM. inventors; Eur. Pat. Appl. EP  329,108.  ; Chem. Abstr. 1990, 112, 56571k
  • 18a Höfert PH. Matusch R. Helv. Chim. Acta  1994,  77:  771 
  • 18b López-Pérez JL. del Olmo E. de Pascual-Teresa B. Merino M. Martín S. San Feliciano A. Tetrahedron  1995,  51:  6343 
  • 18c López-Pérez JL. del Olmo E. de Pascual-Teresa B. Merino M. San Feliciano A. Tetrahedron  1996,  52:  4903 
  • 19a For the synthesis of analogues of thuriferic acid with the benzodioxole system replaced by different heterocyclic moieties, see: Madrigal B. Puebla P. Ramos A. Peláez R. Grávalos D. Caballero E. Medarde M. Bioorg. Med. Chem.  2002,  10:  303 
  • 19b For the synthesis of thuriferic acid ethyl ester, see: Pohmakotr M. Komutkul T. Tuchinda P. Prabpai S. Kongsearee P. Reutrakul V. Tetrahedron  2005,  61:  5311 
  • 20 San Feliciano A. López JL. Medarde M. Miguel del Corral JM. de Pascual-Teresa B. Puebla P. Tetrahedron  1988,  44:  7255 
  • 21 Wagh AP. Kulkarni AB. Indian J. Chem.  1974,  12:  923 
  • 23 For the synthesis of 4-hydroxy-3-methyl-6,7-(methylene-dioxy)-1-(3,4,5-trimethoxyphenyl)-2-naphthoic acid (7, R = H, Figure 2) from thuriferic acid, see: Ogiku T. Yoshida Si. Ohmizu H. Iwasaki T. J. Org. Chem.  1995,  60:  4585 
  • 24 For the synthesis of oxime derivatives from 4-ketolignans lacking the lactone ring, see: Gordaliza M. Castro MA. Miguel del Corral JM. López-Vázquez ML. García PA. San Feliciano A. García-Grávalos MD. Broughton H. Tetrahedron  1997,  53:  15743 
  • 25a Khuong-Huu Q. Monneret C. Yassi J. Goutarel R. Bull. Soc. Chim. Fr.  1964,  2169 
  • 25b Astles PC. Brown TJ. Halley F. Handscombe CM. Harris NV. Majid TN. McCarthy C. McLay I. Morlay A. Porter B. Roach AG. Sargent C. Smith C. Walsh RJA. J. Med. Chem.  2000,  43:  900 
  • 26 Bramson HN. Corona J. Davis ST. Dickerson SH. Edelstein M. Frye SV. Gampe RT. Harris PA. Hassel A. Holmes WD. Hunter RN. Lackey KE. Lovejoy B. Luzzio MJ. Montana V. Rocque WJ. Rusnak D. Shewchuck L. Veal JM. Walker DH. Kuyper LF. J. Med. Chem.  2001,  44:  4339 
  • 29 Uneyama K. Watanabe H. Tetrahedron Lett.  1991,  32:  1459 
  • 30 Del Corral JMM. Gordaliza M. Castro MA. López-Vázquez ML. García-Grávelos MD. Broughton HB. San Feliciano A. Tetrahedron  1997,  53:  6555 
22

To avoid the formation of the protonated β-amino ketones 6 as by-products, CDCl3 over K2CO3 must be used.

27

Synthesis of 6 and 3; General Procedure To a solution of the methyl ester of thuriferic acid 5 (50 mg, 0.117 mmol) in anhyd THF (2 mL) were added Et3N and the aniline at r.t. (Table [1] ). The reaction mixture was then heated at 65 °C for the reaction time indicated, concentrated under reduced pressure, and the crude product was purified by chromatography on silica gel (cyclohexane-EtOAc, 5:2) to give the desired β-amino ketones 6. This compound (0.165 mmol, 1 equiv) was diluted in DMF (2.5 mL) and a 1 M solution of t-BuOK in t-BuOH (1 M; 16.5 µL, 0.1 equiv) was added at r.t. The mixture was stirred for 20 min then the pH was adjusted to 7 by the addition of aq NH4Cl. The mixture was extracted with EtOAc (3 × 20 mL), the combined organic phases were dried over MgSO4, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (cyclohexane-EtOAc, 3:1) to furnish the γ-lactam lignans 3.
Compound 6i: Yellow powder; yield: 31%; mp 194 °C; [α]D 20 -84 (c 0.19, CHCl3). IR: 3400-3300, 2940, 1734, 1671, 1601, 1506, 1480 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.07 (d, 2 H, J = 9.2 Hz, H3 ′′, H5 ′′), 7.47 (s, 1 H, H5), 6.55 (d, 2 H, J = 9.2 Hz, H2 ′′, H6 ′′), 6.33 (s, 2 H, H2 , H6 ), 6.29 (s, 1 H, H8), 6.00 (m, 2 H, OCH2O), 5.19 (br s, 1 H, NH), 4.36 (d, 1 H, J = 10.7 Hz, H1), 3.86 (s, 3 H, OMe4 ), 3.80 (s, 6 H, OMe3 ,5 ), 3.63 (m, 1 H, H11a), 3.49 (s, 3 H, CO2Me), 3.48 (m, 1 H, H11b), 3.24 (dd, 1 H, J = 12.9, 10.7 Hz, H2), 3.19 (m, 1 H, H3). 13C NMR (75 MHz, acetone-d 6): δ = 195.8, 174.0, 155.8, 155.5, 154.4, 149.2, 143.7, 139.6, 139.1, 138.5, 128.4, 127.7, 112.9, 110.0, 108.6, 106.7, 104.1, 61.5, 57.4, 54.0, 53.1, 50.9, 50.0, 43.7. MS (DCI, NH3): m/z = 565 [M + H]+.
Compound 3i: Yellow powder; yield: 65%; mp 235-240 °C; [α]D 20 -110 (c 0.34, CHCl3). IR: 2940, 1716, 1670, 1597, 1521, 1481 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 9.3 Hz, 2 H, H3 ′′, H5 ′′), 7.79 (d, J = 9.3 Hz, 2 H, H2 ′′, H6 ′′), 7.48 (s, 1 H, H5), 6.73 (s, 1 H, H8), 6.27 (s, 2 H, H2 , H6 ), 6.04 (m, 2 H, OCH2O), 4.81 (d, J = 1.7 Hz, 1 H, H1), 4.38 (d, J = 9.7 Hz, 1 H, H11a), 4.01 (m, 1 H, H11b), 3.81 (s, 3 H, OMe4 ), 3.76 (s, 6 H, OMe3 ′,5 ), 3.40 (dd, J = 7.6, 1.7 Hz, 1 H, H2), 3.29 (m, 1 H, H3). 13C NMR (75 MHz, CDCl3): δ = 193.9, 172.3, 153.7, 153.5, 144.1, 143.6, 139.6, 138.1, 137.0, 126.9, 124.5, 118.6, 109.3, 105.8, 104.6, 102.0, 60.6, 56.0, 50.5, 43.3, 42.9, 39.5. MS (DCI, NH3): m/z = 533 [M + H]+, 550 [M + NH4]+.

28

The 2,3-cis stereochemistry of 3a-i was deduced from the J 1,2 and J 2,3 coupling constants (1.7 and 7.6 Hz, respectively for 3i) and was confirmed from NOESY correlations of H2/H3, H2/H2 ′,6 , and H3/H2 ′,6 . Molecular modeling [Insight II, Discover, MD simulations (300 K), cff 91, ε = 4.8 for CDCl3] provided a unique global minimum conformation for 3i which fitted the NOE data (Figure [3] ).

Figure 3