Subscribe to RSS
DOI: 10.1055/s-2006-932485
Synthesis of γ-Lactam Lignans via Aza-Michael Addition
Publication History
Publication Date:
20 February 2006 (online)
Abstract
The synthesis of γ-lactam lignans from thuriferic acid via Michael addition of substituted anilines under basic conditions, followed by lactam ring closure, is described.
Key words
lignans - lactams - Michael additions - thuriferic acid - privileged structure
-
1a
Meyers AI.Snyder L. J. Org. Chem. 1993, 58: 36 -
1b
Rigo B.Fasseur D.Cherepy N.Couturier D. Tetrahedron Lett. 1989, 30: 7057 - 2
Nilsson BM.Ringdahl B.Hacksell V. J. Med. Chem. 1990, 33: 580 - 3
Bergmann R.Gericke R. J. Med. Chem. 1990, 33: 492 -
4a
Garvey DS.May PD.Nadzan AM. J. Org. Chem. 1990, 55: 936 -
4b
Eda NJ.Rae ID.Hearn MTW. Aust. J. Chem. 1991, 44: 891 - 5
Braña MF.Garranzo M.de Pascual-Teresa B.Pérez-Castells J.Torres MR. Tetrahedron 2002, 58: 4825 - 6
Damour D.Herman F.Labaudinière R.Pantel G.Vuilborgne M.Mignani S. Tetrahedron 1999, 55: 10135 -
7a
Borthwick AD.Angier SJ.Crame AJ.Exall AM.Haley TM.Hart GJ.Mason AM.Pennell AMK.Weingarten GW. J. Med. Chem. 2000, 43: 4452 -
7b
MacDonald SJF.Inglis GGA.Bentley D.Dowle MD. Tetrahedron Lett. 2002, 43: 5057 - 8
Kleinman EF.Campbell E.Giordano LA.Cohan VL.Jenkinson TH.Cheng JB.Shirley JT.Pettipher ER.Salter ED.Hibbs TA.DiCapua FM.Bordner J. J. Med. Chem. 1998, 41: 266 - 9
Popke U.Gross EM.Francke W. Tetrahedron Lett. 1997, 38: 379 -
10a
Matsumoto N.Tsuchida T.Maruyama M.Kinoshita N.Homma Y.Iinuma H.Sawa T.Hamada M.Takeuchi T.Heida N.Yoshioka T. J. Antibiot. 1999, 52: 269 -
10b
Kelly TR.Xu D.Martínez G.Wang H. Org. Lett. 2002, 4: 1527 - 11
Lin H.Ng FW.Danishefsky SJ. Tetrahedron Lett. 2002, 43: 549 -
12a
Hanusch-Kompa C.Ugi I. Tetrahedron Lett. 1998, 39: 2725 -
12b
Short KM.Mjalli AMM. Tetrahedron Lett. 1997, 38: 359 -
12c
Harriman GCB. Tetrahedron Lett. 1997, 38: 5591 -
12d
Hulme C.Ma L.Cherrier M.-P.Romano JJ.Morton G.Duquenne C.Salvino J.Labaudinière R. Tetrahedron Lett. 2000, 41: 1883 - For a review, see:
-
13a
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 - For typical examples, see:
-
13b
Evans BE.Rittle KE.Bock MG.DiPardo RM.Freidinger RM.Whitter WL.Lundell GF.Veber DF.Anderson PS.Chang RSL.Lotti VJ.Cerino DJ.Chen TB.Kling PJ.Kunkel KA.Springler JP.Hirshfield J. J. Med. Chem. 1988, 31: 2235 -
13c
Mason JS.Morize I.Menard PR.Cheney DL.Hulme C.Labaudinière RF. J. Med. Chem. 1999, 42: 3251 -
13d
Nicolaou KC.Pfefferkorn JA.Roecker AJ.Cao G.-Q.Barluenga S.Mitchell HJ. J. Am. Chem. Soc. 2000, 122: 9939 - 14 The sub-structure, tetrahydronaphthalene, of this system is also a privileged structure, see:
Lautens M.Rovis T. Tetrahedron 1999, 55: 8967 - Reviews:
-
15a
Ward RS. Nat. Prod. Rep. 1995, 12: 183 -
15b
Ward RS. Nat. Prod. Rep. 1997, 14: 43 -
15c
Ward RS. Nat. Prod. Rep. 1999, 16: 75 -
16a
Larsson O, andAxelsson M. inventors; PCT WO 02/102805. -
16b
Girnita A.Girnita L.del Prete F.Bartolazzi A.Larsson O.Axelson M. Cancer Res. 2004, 64: 236 -
16c
Vasilcanu D.Girnita A.Girnita L.Vasilcanu R.Axelson M.Larsson O. Oncogene 2004, 23: 7854 -
16d
Menu E.Jernberg-Wiklund H.Stromberg T.De Raeve H.Girnita L.Larsson O.Axelson M.Asosingh K.Nilsson K.Van Camp B.Vanderkerken K. Blood 2006, 107: 655 -
16e
Stromberg T.Ekman S.Girnita L.Dimberg LY.Larsson O.Axelson M.Lennartsson J.Hellman U.Carlson K.Osterborg A.Vanderkerken K.Nilsson K.Jernberg-Wiklund H. Blood 2006, 107: 669 -
17a
Kadow JF.Vyas DM.Doyle TW. Tetrahedron Lett. 1989, 30: 3299 -
17b
Kadow JF, andVyas DM. inventors; Eur. Pat. Appl. EP 329,108. ; Chem. Abstr. 1990, 112, 56571k -
18a
Höfert PH.Matusch R. Helv. Chim. Acta 1994, 77: 771 -
18b
López-Pérez JL.del Olmo E.de Pascual-Teresa B.Merino M.Martín S.San Feliciano A. Tetrahedron 1995, 51: 6343 -
18c
López-Pérez JL.del Olmo E.de Pascual-Teresa B.Merino M.San Feliciano A. Tetrahedron 1996, 52: 4903 -
19a For the synthesis of analogues of thuriferic acid with the benzodioxole system replaced by different heterocyclic moieties, see:
Madrigal B.Puebla P.Ramos A.Peláez R.Grávalos D.Caballero E.Medarde M. Bioorg. Med. Chem. 2002, 10: 303 -
19b For the synthesis of thuriferic acid ethyl ester, see:
Pohmakotr M.Komutkul T.Tuchinda P.Prabpai S.Kongsearee P.Reutrakul V. Tetrahedron 2005, 61: 5311 - 20
San Feliciano A.López JL.Medarde M.Miguel del Corral JM.de Pascual-Teresa B.Puebla P. Tetrahedron 1988, 44: 7255 - 21
Wagh AP.Kulkarni AB. Indian J. Chem. 1974, 12: 923 - 23 For the synthesis of 4-hydroxy-3-methyl-6,7-(methylene-dioxy)-1-(3,4,5-trimethoxyphenyl)-2-naphthoic acid (7, R = H, Figure 2) from thuriferic acid, see:
Ogiku T.Yoshida Si.Ohmizu H.Iwasaki T. J. Org. Chem. 1995, 60: 4585 - 24 For the synthesis of oxime derivatives from 4-ketolignans lacking the lactone ring, see:
Gordaliza M.Castro MA.Miguel del Corral JM.López-Vázquez ML.García PA.San Feliciano A.García-Grávalos MD.Broughton H. Tetrahedron 1997, 53: 15743 -
25a
Khuong-Huu Q.Monneret C.Yassi J.Goutarel R. Bull. Soc. Chim. Fr. 1964, 2169 -
25b
Astles PC.Brown TJ.Halley F.Handscombe CM.Harris NV.Majid TN.McCarthy C.McLay I.Morlay A.Porter B.Roach AG.Sargent C.Smith C.Walsh RJA. J. Med. Chem. 2000, 43: 900 - 26
Bramson HN.Corona J.Davis ST.Dickerson SH.Edelstein M.Frye SV.Gampe RT.Harris PA.Hassel A.Holmes WD.Hunter RN.Lackey KE.Lovejoy B.Luzzio MJ.Montana V.Rocque WJ.Rusnak D.Shewchuck L.Veal JM.Walker DH.Kuyper LF. J. Med. Chem. 2001, 44: 4339 - 29
Uneyama K.Watanabe H. Tetrahedron Lett. 1991, 32: 1459 - 30
Del Corral JMM.Gordaliza M.Castro MA.López-Vázquez ML.García-Grávelos MD.Broughton HB.San Feliciano A. Tetrahedron 1997, 53: 6555
References and Notes
To avoid the formation of the protonated β-amino ketones 6 as by-products, CDCl3 over K2CO3 must be used.
27
Synthesis of 6 and 3; General Procedure
To a solution of the methyl ester of thuriferic acid 5 (50 mg, 0.117 mmol) in anhyd THF (2 mL) were added Et3N and the aniline at r.t. (Table
[1]
). The reaction mixture was then heated at 65 °C for the reaction time indicated, concentrated under reduced pressure, and the crude product was purified by chromatography on silica gel (cyclohexane-EtOAc, 5:2) to give the desired β-amino ketones 6. This compound (0.165 mmol, 1 equiv) was diluted in DMF (2.5 mL) and a 1 M solution of t-BuOK in t-BuOH (1 M; 16.5 µL, 0.1 equiv) was added at r.t. The mixture was stirred for 20 min then the pH was adjusted to 7 by the addition of aq NH4Cl. The mixture was extracted with EtOAc (3 × 20 mL), the combined organic phases were dried over MgSO4, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (cyclohexane-EtOAc, 3:1) to furnish the γ-lactam lignans 3.
Compound 6i: Yellow powder; yield: 31%; mp 194 °C; [α]D
20 -84 (c 0.19, CHCl3). IR: 3400-3300, 2940, 1734, 1671, 1601, 1506, 1480 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.07 (d, 2 H, J = 9.2 Hz, H3
′′, H5
′′), 7.47 (s, 1 H, H5), 6.55 (d, 2 H, J = 9.2 Hz, H2
′′, H6
′′), 6.33 (s, 2 H, H2
′, H6
′), 6.29 (s, 1 H, H8), 6.00 (m, 2 H, OCH2O), 5.19 (br s, 1 H, NH), 4.36 (d, 1 H, J = 10.7 Hz, H1), 3.86 (s, 3 H, OMe4
′), 3.80 (s, 6 H, OMe3
′
,5
′), 3.63 (m, 1 H, H11a), 3.49 (s, 3 H, CO2Me), 3.48 (m, 1 H, H11b), 3.24 (dd, 1 H, J = 12.9, 10.7 Hz, H2), 3.19 (m, 1 H, H3). 13C NMR (75 MHz, acetone-d
6): δ = 195.8, 174.0, 155.8, 155.5, 154.4, 149.2, 143.7, 139.6, 139.1, 138.5, 128.4, 127.7, 112.9, 110.0, 108.6, 106.7, 104.1, 61.5, 57.4, 54.0, 53.1, 50.9, 50.0, 43.7. MS (DCI, NH3): m/z = 565 [M + H]+.
Compound 3i: Yellow powder; yield: 65%; mp 235-240 °C; [α]D
20 -110 (c 0.34, CHCl3). IR: 2940, 1716, 1670, 1597, 1521, 1481 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 9.3 Hz, 2 H, H3
′′, H5
′′), 7.79 (d, J = 9.3 Hz, 2 H, H2
′′, H6
′′), 7.48 (s, 1 H, H5), 6.73 (s, 1 H, H8), 6.27 (s, 2 H, H2
′, H6
′), 6.04 (m, 2 H, OCH2O), 4.81 (d, J = 1.7 Hz, 1 H, H1), 4.38 (d, J = 9.7 Hz, 1 H, H11a), 4.01 (m, 1 H, H11b), 3.81 (s, 3 H, OMe4
′), 3.76 (s, 6 H, OMe3
′,5
′), 3.40 (dd, J = 7.6, 1.7 Hz, 1 H, H2), 3.29 (m, 1 H, H3). 13C NMR (75 MHz, CDCl3): δ = 193.9, 172.3, 153.7, 153.5, 144.1, 143.6, 139.6, 138.1, 137.0, 126.9, 124.5, 118.6, 109.3, 105.8, 104.6, 102.0, 60.6, 56.0, 50.5, 43.3, 42.9, 39.5. MS (DCI, NH3): m/z = 533 [M + H]+, 550 [M + NH4]+.
The 2,3-cis stereochemistry of 3a-i was deduced from the J 1,2 and J 2,3 coupling constants (1.7 and 7.6 Hz, respectively for 3i) and was confirmed from NOESY correlations of H2/H3, H2/H2 ′,6 ′, and H3/H2 ′,6 ′. Molecular modeling [Insight II, Discover, MD simulations (300 K), cff 91, ε = 4.8 for CDCl3] provided a unique global minimum conformation for 3i which fitted the NOE data (Figure [3] ).