Subscribe to RSS
DOI: 10.1055/s-2006-933126
Spiroketalization Reactions on a Carbohydrate Template
Publication History
Publication Date:
09 March 2006 (online)
Abstract
Negishi and Stille coupling reactions of 3,4,6-tri-O-benzyl-2-(tri-n-butylstannyl)-d-glucal with (Z)-vinyl iodides provides access to functionalized spiroketals.
Key words
Stille reaction - spiro compounds - palladium - tin - cross-coupling
- 2
Elsley DA.MacLeod D.Miller JA.Quayle P.Davies GM. Tetrahedron Lett. 1992, 33: 409 -
3a
Mead KT.Brewer BN. Curr. Org. Chem. 2003, 7: 227 -
3b
Brimble MA. Curr. Org. Chem. 2003, 7: 1461 - For recent reviews, see:
-
4a
Nicolaou KC.Bulger PC.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 -
4b
Echavarren AM. Angew. Chem. Int. Ed. 2005, 44: 3962 - 5
Conway JC.Quayle P.Regan AC.Urch CJ. Tetrahedron 2005, 61: 11910 -
6a
Stork G.Zhao K. Tetrahedron Lett. 1989, 30: 2173 -
6b For a recent application, see:
Dias LC.de Oliveira LG.Vilcachagua JD.Nigsch F. J. Org. Chem. 2005, 70: 2225 - 7
Abas A.Beddoes RL.Conway JC.Quayle P.Urch CJ. Synlett 1995, 1264 -
8a
Helliwell M.Karim S.Parmee ER.Thomas EJ. Org. Biomol. Chem. 2005, 3: 3636 ; and references cited therein - For pertinent reviews, see:
-
8b
Ikeda H.Omura S. Chem. Rev. 1997, 97: 2591 -
8c
Ley SV.Armstrong A. In Strategies and Tactics in Organic Synthesis Vol. 3Lindberg T. Academic Press; London: 1991. p.237 -
8d
Davies HG.Green RH. Chem. Soc. Rev. 1991, 20: 211 -
8e
Davies HG.Green RH. Chem. Soc. Rev. 1991, 20: 271 - 9 For a review, see:
Ferrier RJ.Zubkov OA. Org. React. 2003, 62: 569 - 10 For related rearrangements, see:
Paquette LA.Kinney MJ.Dullweber U. J. Org. Chem. 1997, 62: 1713 - For intermolecular etherification processes, see:
-
11a
Bolitt V.Mioskowski C.Le S.-G.Falck JR. J. Org. Chem. 1990, 55: 5812 -
11b
Jaunzems J.Kashin D.Schönberger A.Kirschning A. Eur. J. Org. Chem. 2004, 3435 -
11c
Lin H.-C.Du W.-P.Chang C.-C.Lin C.-H. Tetrahedron Lett. 2005, 46: 5071 -
11d For iodo-spiroketalization, see:
Holston EB.Roush WR. Org. Lett. 2002, 4: 3719 -
12a This intermediate has been prepared previously, see:
Sellès P.Lett R. Tetrahedron Lett. 2002, 43: 4621 -
12b For a synthesis of racemic 10, see ref. 5b. Alcohol 14 has been prepared previously, see:
Muñoz DM.Passey SC.Simpson TJ.Willis CL.Campbell JB.Rosser R. Aust. J. Chem. 2004, 57: 645 -
13a
Jarosz S.Zamojski A. Curr. Org. Chem. 2003, 7: 13 -
13b
Somsak L. Chem. Rev. 2001, 101: 81 -
13c
Friesen RW.Loo RW.Sturino CF. Can. J. Chem. 1994, 72: 1262 -
13d
Friesen RW.Sturino CF. J. Org. Chem. 1990, 55: 2572 -
13e
Dubois E.Beau JM. Tetrahedron Lett. 1990, 31: 5165 - For carbonylative Stille reactions, see:
-
13f
Steunenberg P.Jeanneret V.Zhu Y.-H.Vogel P. Tetrahedron: Asymmetry 2005, 16: 337 -
13g
Dubbaka SR.Steunenburg P.Vogel P. Synlett 2004, 1235 -
13h
Friesen RW.Loo RW.Sturino CF. Can. J. Chem. 1994, 72: 1262 -
13i
Dubois E.Beau JM. Tetrahedron Lett. 1990, 31: 5165 -
13j For the Pd-catalyzed coupling reactions of glucal-derived indium reagents, see:
Lehmann Y.Awasthi S.Minehan T. Org. Lett. 2003, 5: 2405-2408 - For Stille-type cross-coupling reactions of iodoglucals, see:
-
13k
Friesen RW.Loo RW. J. Org. Chem. 1991, 56: 4821 -
13l
Potuzak JS.Tan DS. Tetrahedron Lett. 2004, 45: 1797 -
14a See ref. 7 and:
Koo B.McDonald F. Org. Lett. 2005, 7: 3621 -
14b
Dubois E.Beau JM. Carbohydr. Res. 1992, 228: 103 - 15
Newton RF.Reynolds DP.Finch MAW.Kelly DA.Roberts SM. Tetrahedron Lett. 1979, 20: 3981 - For reviews, see:
-
16a
Negishi E.-i.Hu Q.Huang Z.Qian M.Wang G. Aldrichimica Acta 2005, 38: 71 -
16b
Negishi E.-i.Zeng X.Tan Z.Mingxing Q.Hu Q.Huang Z. In Metal-Catalyzed Cross-Coupling Reactions 2nd ed., Vol. 2:de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.815 - For the use of Negishi cross-coupling reactions in related contexts, see:
-
16c
Boucard V.Larrieu K.Lubin-Germain N.Uziel J.Auge J. Synlett 2003, 1834 -
16d
Holzapfel CW.Portwig CM. Heterocycles 1997, 45: 1433 -
16e
Casson S.Kocienski P. J. Chem. Soc., Perkin Trans. 1 1994, 1187 -
16f
Tius MA.Gu X.-Q.Gomez-Galeno J. J. Am. Chem. Soc. 1990, 112: 8188 - 17 Confer:
Boeckman RK.Charette AB.Asberom T.Johnston BH. J. Am. Chem. Soc. 1991, 113: 5337 - 20 See:
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry Pergamon; Oxford: 1983. Chap. 2. -
22a
Jaurand G.Beau J.-M.Sinaӱ P. J. Chem. Soc., Chem. Commun. 1981, 572 -
22b
Diez-Martin D.Grice P.Kolb HC.Ley SV.Madin A. Tetrahedron Lett. 1990, 31: 3445 -
22c For related oxidative spirocyclization reactions, see:
Potuzak JS.Moilanen SB.Tan DS. J. Am Chem. Soc. 2005, 127: 13706 - For an in-depth analysis, see:
-
23a
Roush WR.Sebesta DP.Bennett CE. Tetrahedron 1997, 53: 8825 -
23b
Predojević J.Vukićević MD.Wurst K.Onganania K.-H.Laus G.Vukićević RD. Carbohydr. Res. 2004, 339: 37 ; for structural studies - For other approaches to the synthesis of ‘contra-thermodynamic’ spiroketals, see:
-
24a
Doubskӱ Zedník J.Vašíčková S.Koutek B. Tetrahedron Lett. 2005, 46: 7923 -
24b
Paterson I.Coster MJ.Chen DY.-K.Gibson KR.Wallace DJ. Org. Biomol. Chem. 2005, 2410 -
24c
Takaoka LR.Buckmelter AJ.LaCruz TE.Rychnovsky SD. J. Am. Chem. Soc. 2005, 127: 528 -
24d
Chen J.Fletcher MT.Kitching W. Tetrahedron: Asymmetry 1995, 6: 967 -
25a
Milne JE.Jarowicki K.Kocienski PJ.Alonso J. Chem. Commun. 2002, 426 -
25b
Milne JE.Kocienski PJ. Synthesis 2003, 584 -
25c
This route promises to provide access to substrates such as 3 with greater efficiency than observed using Beau’s methodology. Beau’s route (that used in this study, see ref. 14b) requires recycling of i in order to achieve the throughput required for preparative-scale reactions (Scheme 6).
References and Notes
Present address: Glycoform Limited, Unit 44C, Milton Park, Abingdon, Oxon OX14 4RU, UK
18As indicated by D2O quenching experiments.
19
Representative Spectroscopic Data.
Compound 17: IR (film): νmax = 3031, 2968, 2927, 1661, 1496, 1454, 1399, 1365, 1309, 1245, 1215, 1177, 1097, 1028, 989, 911, 851, 735, 698 cm-1. 1H NMR (300 MHz, C6D6): δ = 1.16 (3 H, d, J = 7.5 Hz, Me), 1.64 (1 H, br d dt, J = 18.0, 3.5 Hz, 3-H), 1.75 (1 H, br d, J = 18.0 Hz, 3-H), 1.77 (1 H, t, J = 12.0 Hz, 11ax-H), 2.41 (1 H, dd, J = 12.5 Hz, 11eq-H), 3.84 (1 H, dd, J = 11.0, 2.0 Hz, CH
2
OBn), 3.90 (1 H, t, J = 9.0 Hz, 9-H), 3.95 (1 H, dd, J = 11.0, 5.0 Hz, CH
2
OBn), 4.09-4.18 (1 H, m, 2-H), 4.20-4.26 (1 H, ddd, J = 10.0, 5.0, 2.0 Hz, 8-H), 4.35-4.44 (1 H, m, 10-H), 4.45-5.20 (6 H, m, 3 × CH
2
Ph), 4.69-4.71 (2 H, m, 4-H, 5-H), 7.10-7.50 (15 H, m, Ar). 13C NMR (75 MHz, C6D6): δ = 21.13, 32.34, 40.62, 63.71, 70.12, 71.50, 72.56, 73.53, 75.08, 78.68, 78.97, 96.19, 127.44, 127.49, 127.54, 127.69, 127.89, 128.01, 128.33, 128.49, 129.94, 129.94, 139.28, 139.64, 139.73. MS (CI): m/z (%) 501 (20) [M + H]+. HRMS: m/z calcd for C32H37O5: 501.2641. Found: 501.2640.
Mixture of 19 and 20 (19:20 = 1.5:1): IR (film): νmax = 3030, 2918, 1657, 1606, 1579, 1496, 1477, 1454, 1395, 1365, 1259, 1209, 1098, 1001, 910, 736, 696 cm-1.
Compound 19: 1H NMR (300 MHz, CHCl3): δ = 1.28 (3 H, d, J = 7 Hz, Me), 2.07-2.20 (2 H, m, 2 × 3-H), 3.70 (1 H, d, J = 4.0 Hz, 11eq-H), 3.72-3.90 (4 H, m, 8-H, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.44-5.00 (6 H, m, 3 × CH
2
Ph), 4.54 (1 H, dd, J = 10.0, 4.0 Hz, 10-H), 6.00-6.20 (1 H, m, 4-H), 6.68 (1 H, d, J = 10.0 Hz, 5-H), 7.10-7.60 (20 H, m, Ar).
Compound 20: 1H NMR (300 MHz, CHCl3): δ = 1.32 (3 H, d J = 7.0 Hz), 2.07-2.20 (2 H, m, 3-H), 3.42 (1 H, d, J = 11.0 Hz, 11ax-H), 3.72-3.90 (4 H, m, H-8, H-9, CH
2
OBn), 3.92-4.10 (1 H, m, 2-H), 4.19 (1 H, dd J = 11.0, 9.0 Hz, 10-H), 4.44-5.00 (5 H, m, OCH
2
Ph), 5.15 (1 H, d, J = 10.0 Hz, OCH
2
Ph), 5.74 (1 H, d, J = 10.0 Hz, 5-H), 6.00-6.20 (1 H, m, 4-H). 13C NMR (75 MHz, CHCl3, mixture of 19 and 20): δ = 20.98, 21.01, 31.68, 32.03, 55.33, 64.23, 64.74, 68.95, 69.43, 71.33, 71.82, 72.27, 73.38, 73.48, 74.96, 75.07, 75.94, 76.45, 79.40, 79.92, 83.28, 97.75, 98.56, 126.59, 127.03, 127.38, 127.43, 127.49, 127.62, 127.69, 127.75, 127.90, 127.96, 128.19, 128.25, 128.32, 128.38, 128.45, 128.84, 129.00, 129.27, 129.61, 131.55, 131.75, 132.88, 133.54, 138.30, 138.41, 138.46, 138.62 ppm. MS (CI): m/z = 657 (57) [M + H]+. HRMS: m/z calcd for C38H40O5
80Se: 656.2041. Found: 656.2050.
Compound 21: IR (film): νmax = 3062, 3031, 2928, 1656, 1579, 1496, 1477, 1454, 1398, 1360, 1321, 1264, 1209, 1112, 1025, 910, 838, 785, 736, 697 cm-1. 1H NMR (300 MHz, CHCl3): δ = 1.37 (3 H, d, J = 7.5 Hz, Me), 2.10 (1 H, dt, J = 18, 3-H), 2.43 (1 H, ddd, J = 18.0, 5.0, 2.0 Hz, 3-H), 3.55 (1 H, d, J = 12 Hz, 11ax-H), 3.81 (5 H, m, 8-H, 9-H, 10-H, CH
2
OBn), 4.44 (1 H, m, 2-H), 4.56-5.07 (6 H, m, 3 × CH
2
Ph), 6.13 (1 H, d, J = 11.0 Hz, 4-H), 6.32 (1 H, dt, J = 11.0, 5.0 Hz, 5-H), 7.20-7.25 (20 H, m, Ar) ppm. 13C NMR (75 MHz): δ = 21.71, 30.82, 57.39, 69.43, 69.87, 73.35, 73.42, 74.91, 75.44, 80.12, 83.58, 97.67, 123.47, 126.88, 127.52, 127.60, 127.82, 127.99, 128.15, 128,26, 128.34, 128.48, 128.72, 128.94, 131.13, 131.66, 133.13, 138.16, 138.30, 138.49 ppm. MS (CI): m/z (%) 657 (32) [M + H]+. HRMS: m/z calcd for C38H40O5
80Se: 656.2041. Found: 656.2042.
Confer ref. 22b.