Subscribe to RSS
DOI: 10.1055/s-2006-933137
Palladium-Pincer-Complex-Catalyzed Transformations Involving Organometallic Species
Publication History
Publication Date:
21 February 2006 (online)
Abstract
Highly selective palladium-catalyzed transformations involving organoboranes, silanes, stannanes and selenides were developed by employment of pincer-complex catalysts. A novel catalytic transformation was designed for allylation of aldehyde and imine electrophiles using allylstannanes and allylboranes. These reactions proceed under mild and neutral conditions to afford homoallyl alcohols and amines with a high level of functional group tolerance. The regio- and stereoselectivity of the transformations is very high, and promising levels of enantioselectivity could be obtained by application of chiral pincer complexes. The rest of the presented reactions involve synthesis of allylstannanes, allylboranes, allenyl stannanes/silanes and organoselenides using various dimetallic reagents. Most of the presented pincer-complex-catalyzed reactions are not amenable with traditional palladium(0) catalysis. The employed mild and neutral reaction conditions allow the isolation of stereo- and regiodefined organometallic species, which are useful building blocks in advanced organic synthesis and in natural product synthesis. The mechanistic studies have revealed some important differences between the mechanism of pincer-complex-catalyzed and palladium(0)-catalyzed processes.
-
1 Introduction
-
2 General Reactivity of Pincer-Complex Catalysts in Organometallic Chemistry
-
3 Electrophilic Allylic Substitution of Electrophiles
-
3.1 Pincer-Complex-Catalyzed Electrophilic Allylation of Aldehyde and Imine Substrates with Allylstannanes
-
3.2 Allylation of Sulfonimines with Trifluoro(allyl)borate Substrate
-
3.3 Asymmetric Allylation of Sulfonimines with Chiral Pincer-Complex Catalysts
-
4 Synthesis of Organometallic Compounds by Pincer-Complex-Catalyzed Transformations
-
4.1 Synthesis of Allylstannanes Using Pincer-Complex Catalysts
-
4.2 Allylic Boronation Using Tetrahydroxydiboron
-
4.3 Trimethyltin Substitution of Propargylic Substrates
-
4.4 Synthesis of Allenylsilanes from Propargyl Chlorides
-
4.5 Phenylselenation of Organohalides
-
5 Cross-Coupling of Vinyl Epoxides and Aziridines with Organoboronic Acids
-
6 Mechanistic Aspects of the Pincer-Complex-Catalyzed Transformations
-
6.1 Mechanism of the Electrophilic Allylation Reactions
-
6.2 Transfer of the Trimethylstannyl Group to Allyl or Propargyl Substrates
-
7 Conclusions
Key words
allylations - boron - catalysis - palladium - tin
- 1
Tsuji J. Palladium Reagents and Catalysis. New Perspectives for the 21st Century Wiley; Chichester: 2004. - 2
Tsuji J. Perspectives in Organopalladium Chemistry for the 21st Century Elsevier; Amsterdam: 1999. - 3
Tsuji J. Palladium Reagents and Catalysis: Innovations in Organic Synthesis Wiley; Chichester: 1995. - 4
Negishi E.de Meijre A. Organopalladium Chemistry for Organic Synthesis Wiley; New York: 2002. - 5
Albrecht M.van Koten G. Angew. Chem. Int. Ed. 2001, 3750 - 6
Dupont J.Consorti CS.Spencer J. Chem. Rev. 2005, 105: 2527 - 7
Beletskaya IP.Cheprakov AV. J. Organomet. Chem. 2004, 689: 4055 - 8
Slagt MQ.Rodríguez G.Grutters MMP.Gebbink RJMK.Klopper W.Jenneskens LW.Lutz M.Spek AL.van Koten G. Chem. Eur. J. 2004, 10: 1331 - 9
Rodríguez G.Albrecht M.Schoenmaker J.Ford A.Lutz M.Speck AL.van Koten G. J. Am. Chem. Soc. 2002, 124: 5127 - 10
Ohff M.Ohff A.van der Boom ME.Milstein D. J. Am. Chem. Soc. 1997, 119: 11687 - 11
Singleton JT. Tetrahedron 2003, 59: 1837 - 12
van der Boom ME.Milstein D. Chem. Rev. 2003, 103: 1759 - 13
Dupont J.Pfeffer M.Spencer J. Eur. J. Inorg. Chem. 2001, 1917 - 14
Bedford RB.Draper SM.Scully PN.Welch SL. New J. Chem. 2000, 24: 745 - 15
Rimml H.Venanzi LM. J. Organomet. Chem. 1983, 259: C6 - 16
Haenel MW.Jakubik D.Krüger C.Betz P. Chem. Ber. 1991, 124: 333 - 17
van Beek JAM.van Koten G.Dekker GPCM.Wissing E.Zoutberg MC.Stam CH. J. Organomet. Chem. 1990, 394: 659 - 18
Alsters PL.Baesjou PJ.Janssen MD.Kooijman H.Sicherer-Roetman A.Spek AL.van Koten G. Organometallics 1992, 11: 4124 - 19
Bergbreiter DE.Osburn PL.Liu Y.-S. J. Am. Chem. Soc. 1999, 121: 9531 - 20
Dupont J.Beydoun N.Pfeffer M. J. Chem. Soc., Dalton Trans. 1989, 1715 - 21
Yao Q.Kinney EP.Zheng C. Org. Lett. 2004, 6: 2997 - 22
Bedford RB. Chem. Commun. 2003, 1787 - 23
Denmark SE.Stavenger RA.Faucher A.-M.Edwards JP. J. Org. Chem. 1997, 62: 3375 - 24
Dijkstra HP.Meijer MD.Patel J.Kreiter R.van Klink GPM.Lutz M.Spek AL.Canty AJ.van Koten G. Organometallics 2001, 20: 3159 - 25
Gründemann S.Albrecht M.Loch JA.Faller JW.Crabtree RH. Organometallics 2001, 20: 5485 - 26
Motoyama Y.Kawakami H.Shimozono K.Aoki K.Nishiyama H. Organometallics 2002, 21: 3408 - 27
Peris E.Loch JA.Mata J.Crabtree RH. Chem. Commun. 2001, 201 - 28
Taneka K.Minakawa M.Uozumi Y. J. Am. Chem. Soc. 2005, 127: 12273 - 29
Wang Z.Eberhard MR.Jensen CM.Matsukawa S.Yamamoto Y. J. Organomet. Chem. 2003, 681: 189 - 30
Williams BS.Dani P.Lutz M.Spek AL.van Koten G. Helv. Chim. Acta 2001, 84: 3519 - 31
Consorti CS.Ebeling G.Flores FR.Rominger F.Dupont J. Adv. Synth. Catal. 2004, 346: 617 - 32
Rosa GR.Ebeling G.Dupont J.Monterio AL. Synthesis 2003, 2894 - 33
Fossey JS.Richards CJ. Tetrahedron Lett. 2003, 44: 8773 - 34
Eberhard MR. Org. Lett. 2004, 6: 2125 - 35
Sommer WJ.Yu K.Sears JS.Ji Y.Zheng X.Davis RJ.Sherrill CD.Jones CW.Weck M. Organometallics 2005, 24: 4351 - 36
Solin N.Kjellgren J.Szabó KJ. Angew. Chem. Int. Ed. 2003, 42: 3656 - 37
Solin N.Kjellgren J.Szabó KJ. J. Am. Chem. Soc. 2004, 126: 7026 - 38
Solin N.Wallner OA.Szabó KJ. Org. Lett. 2005, 7: 689 - 39
Kjellgren J.Sundén H.Szabó KJ. J. Am. Chem. Soc. 2004, 126: 474 - 40
Kjellgren J.Sundén H.Szabó KJ. J. Am. Chem. Soc. 2005, 127: 1787 - 41
Kjellgren J.Aydin J.Wallner OA.Szabó KJ. Chem. Eur. J. 2005, 11: 5260 - 42
Wallner OA.Szabó KJ. Org. Lett. 2004, 6: 1829 - 43
Wallner OA.Olsson VJ.Eriksson L.Szabó KJ. Inorg. Chim. Acta 2006, in press ; available online - 44
Longmire JM.Zhang X.Shang M. Organometallics 1998, 17: 4374 - 45
Takenaka K.Uozumi Y. Org. Lett. 2004, 6: 1833 - 46
Nakamura H.Iwama H.Yamamoto Y. J. Am. Chem. Soc. 1996, 118: 6641 - 47
Nakamura H.Nakamura K.Yamamoto Y. J. Am. Chem. Soc. 1998, 120: 4242 - 48
Nakamura H.Aoyagi K.Shim J.-G.Yamamoto Y. J. Am. Chem. Soc. 2001, 123: 372 - 49
Fernandes RA.Stimac A.Yamamoto Y. J. Am. Chem. Soc. 2003, 125: 14133 - 50
Szabó KJ. Chem. Eur. J. 2004, 10: 5268 - 51
Szabó KJ. Chem. Eur. J. 2000, 6: 4413 - 52
Solin N.Narayan S.Szabó KJ. J. Org. Chem. 2001, 66: 1686 - 53
Solin N.Narayan S.Szabó KJ. Org. Lett. 2001, 3: 909 - 54
Wallner OA.Szabó KJ. Org. Lett. 2002, 4: 1563 - 55
Wallner OA.Szabó KJ. J. Org. Chem. 2003, 68: 2934 - 56
Wallner OA.Szabó KJ. Chem. Eur. J. 2003, 9: 4025 - 57
Hopkins CD.Malinakova HC. Org. Lett. 2004, 6: 2221 - 58
Hopkins CD.Guan L.Malinakova HC. J. Org. Chem. 2005, 70: 6848 - 59
Batey RA.Thadani AN.Smil DV.Lough AJ. Synthesis 2000, 990 - 60
Sebelius S.Olsson VJ.Szabó KJ. J. Am. Chem. Soc. 2005, 127: 10478 - 61
Gastner T.Ishitani H.Akiyama R.Kobayashi S. Angew. Chem. Int. Ed. 2001, 40: 1896 - 62
Ferraris D.Dudding T.Young B.Drudy WJ.Lectka T. J. Org. Chem. 1999, 64: 2168 - 63
Fang X.Johannsen M.Yao S.Gathergood N.Hazell RC.Jorgensen KA. J. Org. Chem. 1999, 64: 4844 - 64
Ishiyama T.Ahiko T.-A.Miyaura N. Tetrahedron Lett. 1996, 37: 6889 - 65
Sebelius S.Wallner OA.Szabó KJ. Org. Lett. 2003, 5: 3065 - 66
Sebelius S.Szabó KJ. Eur. J. Org. Chem. 2005, 2539 - 67
Beletskaya I.Moberg C. Chem. Rev. 1999, 99: 3435 - 68
Mitchell TN.Amamaria A.Killing H.Rutschow D. J. Organomet. Chem. 1986, 304: 257 - 69
Wallner OA.Szabó KJ. J. Org. Chem. 2005, 70: 9215