Synlett 2006(6): 853-856  
DOI: 10.1055/s-2006-933144
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Spirastrellolide A Fragments for Structure Elucidation

Yue Pan, Jef K. De Brabander*
Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
Fax: +1(214)6480320; e-Mail: jdebra@biochem.swmed.edu;
Weitere Informationen

Publikationsverlauf

Received 24 January 2006
Publikationsdatum:
14. März 2006 (online)

Abstract

A stereocontrolled synthesis of two diastereomeric C1-C22 fragments of spirastrellolide A consistent with reported spectroscopic data has been achieved to aid in a complete configurational assignment of this structurally novel and potent antimitotic natural product. A highly convergent coupling of two enantiomeric C1-C10 methyl ketone fragments with an enantiopure C11-C22 spiroketal ­aldehyde produced the C1-C22 fragments with a longest linear sequence of 13 steps from commercially available starting materials.

5

All new compounds gave spectroscopic data in agreement with the assigned structures.

9

2- d Icr2Ball is enantiocomplimentary to 4- d Icr2Ball, the enantiomer of which is not available, see ref. 6.

10

Paterson and coworkers have prepared the ethyl ester analogue of ent-9 based on our [7a] route to 9 using 2- d Icr2Ball in 90% ee, see ref. 3.

11

For ee determination, see Supporting Information of ref. 7a.

16

To a solution of 11 (0.158 g, 0.444 mmol) in anhyd THF (3 mL) at -78 °C under nitrogen was added n-BuLi (2.5 M in hexane, 0.19 mL, 0.48 mmol) and the solution turned bright yellow. The reaction mixture was stirred at r.t. for 10 min before being cooled to -78 °C. A solution of the Weinreb amide 12 (0.229 g, 0.488 mmol) in THF (1.5 mL) was added dropwise, after which the mixture was warmed to r.t. and stirred for an additional 1.5 h. The reaction was quenched with sat. aq NH4Cl (15 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried over Na2SO4 and concentrated. The residue was puri-fied by column chromatography (hexanes-EtOAc, 20:1 to 15:1) to give the product 18 as a colorless oil (0.278 g, 82%). [α]D 25 -4.9 (c 2.7, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.24 (2 H, d, J = 8.8 Hz), 6.86 (2 H, d, J = 8.8 Hz), 4.43 (2 H, s), 3.93 (1 H, dt, J = 8.0, 4.0 Hz), 3.83 (1 H, dd, J = 9.6, 4.8 Hz), 3.79 (3 H, s), 3.62-3.69 (2 H, m), 3.37-3.48 (2 H, m), 3.32 (3 H, s), 3.19 (1 H, dt, J = 8.0, 4.0 Hz), 2.73-2.80 (1 H, m), 2.54-2.70 (2 H, m), 1.76-1.87 (3 H, m), 1.66 (1 H, td, J = 13.6, 6.0 Hz), 1.20 (3 H, d, J = 7.2 Hz), 0.95 (9 H, t, J = 8.0 Hz), 0.92 (9 H, t, J = 8.0 Hz), 0.88 (9 H, s), 0.63 (6 H, q, J = 8.0 Hz), 0.58 (6 H, q, J = 8.0 Hz), 0.03 (6 H, s). 13C NMR (100 MHz, CDCl3): δ = 188.1, 159.3, 130.5, 129.5, 113.9, 95.3, 82.4, 81.6, 73.2, 72.8, 71.9, 70.8, 59.7, 58.4, 55.4, 41.9, 37.0, 32.9, 26.1, 24.4, 18.4, 14.9, 7.1, 7.0, 5.2, 5.1, -5.2, -5.2. IR: 2955, 2877, 1676, 1514, 1249, 1108, 834, 742 cm-1. MS (ESI): m/z = 773.60 (C40H74O7Si3Na).

17

Product 19 (colorless oil): [α]D 25 +55.8 (c 2.18, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.25 (2 H, d, J = 8.0 Hz), 6.84 (2 H, d, J = 8.0 Hz), 5.71 (1 H, d, J = 10.0 Hz), 5.58 (1 H, dd, J = 10.0, 2.4 Hz), 4.52 (1 H, d, J = 12.0 Hz), 4.48 (1 H, d, J = 12.0 Hz), 3.85-3.90 (1 H, m), 3.77 (3 H, s), 3.67-3.76 (4 H, m), 3.53 (1 H, dd, J = 10.0, 6.0 Hz), 3.27 (3 H, s), 3.15 (1 H, td, J = 9.6, 4.8 Hz), 2.11 (1 H, td, J = 7.2, 2.0 Hz), 2.02-2.06 (1 H, m), 1.92-1.99 (1 H, m), 1.79-1.82 (1 H, m), 1.54-1.73 (3 H, m), 0.95 (3 H, d, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 159.2, 135.4, 130.4, 129.5, 128.5, 113.7, 94.0, 74.8, 73.5, 73.0, 71.6, 69.4, 59.4, 56.4, 55.3, 35.1, 34.0, 33.6, 24.4, 16.7. IR: 3467, 2935, 1514, 1456, 1248, 1100, 1037, 985, 820 cm-1. MS (ESI): m/z = 415.15 (C22H32O6Na).

19

To a solution of ent-5 (36.7 mg, 0.171 mmol) and 2,6-lutidine (140 µL, 1.20 mmol) in anhyd CH2Cl2 (1.2 mL) at -78 °C was added dropwise trimethylsilyl trifluoro-methanesulfonate (186 µL, 1.03 mmol). After stirring for 1.5 h at -78 °C, the reaction was quenched with sat. aq NaHCO3 (5 mL) and the aqueous phase was extracted with hexane (3 × 5 mL). The organic layers were combined, dried over Na2SO4 and concentrated to give a colorless oil (46.0 mg). This crude silylenol ether and aldehyde 6 (66.9 mg, 0.172 mmol) were dissolved in anhyd CH2Cl2 (1.1 mL) and cooled to -78 °C. BF3·OEt2 (27.5 µL, 0.223 mmol) was slowly added and the solution was stirred for 2 h at -78 °C. The reaction was quenched with sat. aq NaHCO3 (5 mL) and the aqueous phase was extracted with CH2Cl2 (3 × 5 mL). The organic layers were combined, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (hexanes-EtOAc, 2:1 to 2:3) to give, in order of elution, the recovered methyl ketone ent-5 (12.3 mg), the minor 1,3-syn aldol product (6.0 mg, 8.7% based on recovered starting material) and the 1,3-anti aldol product 21 (46.2 mg, 76% based on recovered starting material).
Compound 21: [α]D 25 +24.3 (c 1.1, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.26 (2 H, d, J = 8.4 Hz), 6.86 (2 H, d, J = 8.4 Hz), 5.71 (1 H, d, J = 9.6 Hz), 5.60 (1 H, dd, J = 9.6, 2.0 Hz), 4.55 (1 H, d, J = 12.0 Hz), 4.47 (1 H, d, J = 12.0 Hz), 4.39-4.45 (1 H, m), 3.80 (3 H, s), 3.77-3.84 (4 H, m), 3.66 (3 H, s), 3.64-3.68 (1 H, m), 3.55-3.60 (2 H, m), 3.28 (3 H, s), 3.18-3.23 (1 H, m), 2.62-2.69 (3 H, m), 2.36-2.52 (3 H, m), 2.10-2.14 (1 H, m), 2.01-2.05 (1 H, m), 1.51-1.84 (9 H, m), 1.15-1.23 (2 H, m), 0.97 (3 H, d, J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): δ = 209.6, 171.9, 159.2, 135.3, 130.6, 129.6, 128.6, 113.8, 94.1, 74.8, 74.7, 74.5, 73.4, 73.1, 70.7, 69.3, 64.1, 56.4, 55.4, 51.9, 50.9, 50.4, 41.6, 39.6, 34.2, 33.8, 31.2, 30.9, 24.3, 23.3, 16.8. IR: 3490, 2933, 1739, 1514, 1248, 1100, 1036, 985, 821, 728 cm-1. MS (ESI): m/z = 627.30 (C33H48O10Na).
Compound 20 was prepared using the same procedure in 59% yield and 11:1 dr; [α]D 25 +27.0 (c 0.22, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.26 (2 H, d, J = 8.4 Hz), 6.86 (2 H, d, J = 8.4 Hz), 5.71 (1 H, dd, J = 10.0, 1.6 Hz), 5.59 (1 H, dd, J = 10.0, 1.6 Hz), 4.55 (1 H, d, J = 12.0 Hz), 4.46 (1 H, d, J = 12.0 Hz), 4.39-4.45 (1 H, m), 3.80 (3 H, s), 3.75-3.83 (4 H, m), 3.65 (3 H, s), 3.62-3.69 (2 H, m), 3.58 (1 H, dd, J = 10.4, 5.6 Hz), 3.28 (3 H, s), 3.18-3.24 (1 H, m), 2.58-2.68 (3 H, m), 2.33-2.52 (3 H, m), 2.09-2.13 (1 H, m), 2.01-2.06 (1 H, m), 1.50-1.84 (9 H, m), 1.16-1.26 (2 H, m), 0.96 (3 H, d, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 209.5, 171.9, 159.3, 135.3, 130.7, 129.6, 128.64, 113.8, 94.1, 74.7, 74.7, 74.6, 73.4, 73.1, 70.7, 69.3, 64.0, 56.4, 55.5, 51.9, 51.1, 50.4, 41.6, 39.6, 34.2, 33.8, 31.2, 31.0, 24.3, 23.3, 16.8. IR 3464, 2934, 1738, 1514, 1248, 1100, 1037, 985, 736 cm-1. MS (ESI): m/z = 627.30 (C33H48O10Na).

22

Compound 3: [α]D 25 +43.8 (c 0.16, CHCl3). 1H NMR (400 MHz, benzene-d 6): δ = 5.57-5.63 (2 H, m, H15, H16), 4.66 (1 H, app t, J = 7.6 Hz, H11), 4.17-4.21 (3 H, m, H9, H13, H21), 4.06 (1 H, dd, J = 11.6, 1.2 Hz, H22b), 3.86 (1 H, dd, J = 10.8, 5.6 Hz, H22a), 3.53-3.58 (1 H, m, H3), 3.45 (3 H, s, CO2Me), 3.20 (1 H, app t, J = 10.4 Hz, H7), 3.02 (3 H, s, OMe), 3.00-3.05 (1 H, m, H20), 2.22 (1 H, dd, J = 14.8, 8.8 Hz, H2b), 1.98-2.11 (2 H, m, H2a, H14), 1.84-1.94 (3 H, m, H12b, H18b, H19b), 1.72-1.76 (1 H, m, H19a), 1.60-1.69 (4 H, m, H8a, H8b, H10b, H12a), 1.48-1.52 (1 H, m, H18a), 1.36-1.39 (1 H, m, H5b), 1.21 (1 H, d, J = 14.0 Hz, H10a), 1.06-1.12 (3 H, m, H4b, H5a, H6b), 0.85-1.00 (2 H, m, H4a, H6a), 0.81 (3 H, d, J = 7.2 Hz). 13C NMR (75 MHz, benzene-d 6): δ = 171.3 (C1), 135.2 (C15), 129.3 (C16), 94.0 (C17), 79.4 (C7), 75.7 (C20), 74.7 (C3), 74.4 (C21), 71.1 (C13), 70.0 (C9), 65.2 (C11), 63.2 (C22), 55.8 (20-OMe), 51.4 (-CO2Me), 44.3 (C10), 43.1 (C8), 41.3 (C2), 40.9 (C12), 34.9 (C14), 34.3 (C18), 31.5 (C4), 30.9 (C6), 24.4 (C2), 23.2 (C5), 16.7 (14-Me). IR: 3450, 2933, 1738, 1438, 1090, 1044, 982 cm-1. MS (ESI): m/z = 509.5 (C25H42O9Na).
Compound 4: [α]D 25 +46.7 (c 0.18, CHCl3). 1H NMR (400 MHz, benzene-d 6): δ = 5.59 (2 H, app s, H15, H16), 4.62 (1 H, app t, J = 8.8 Hz, H11), 4.36 (1 H, br s, H9), 4.12-4.17 (2 H, m, H13, H21), 4.05 (1 H, dd, J = 11.2, 1.6 Hz, H22b), 3.82 (1 H, dd, J = 11.2, 6.0 Hz, H22a), 3.61-3.66 (1 H, m, H3), 3.51-3.55 (1 H, m, H7), 3.47 (3 H, s, CO2Me), 3.01 (3 H, s, 20-OMe), 2.96-3.01 (1 H, m, H20) 2.33 (1 H, dd, J = 14.8, 8.8 Hz, H2b), 2.01-2.09 (2 H, m, H2a, H14), 1.80-1.93 (3 H, m, H12b, H18b, H19b), 1.66-1.74 (2 H, m, H10b, H19a), 1.50-1.60 (3 H, m, H8a, H8b, H12a), 1.45-1.50 (2 H, m, H5b, H18a), 1.33-1.39 (1 H, m, H10a), 1.08-1.19 (3 H, m, H4b, H5a, H6b), 0.86-0.96 (2 H, m, H4a, H6a), 0.81 (3 H, d, J = 6.8 Hz, 14-Me). 13C NMR (75 MHz, benzene-d 6): δ = 171.7 (C1), 135.3 (C15), 129.2 (C16), 94.0 (C17), 75.9 (C20), 75.7 (C7), 74.6 (C3), 74.4 (C21), 71.0 (C13), 66.0 (C9), 65.1 (C11), 63.4 (C22), 55.7 (20-OMe), 51.4 (CO2Me), 44.4 (C10), 43.0 (C8), 41.4 (C2), 40.6 (C12), 34.8 (C14), 34.2 (C18), 31.2 (C4), 31.0 (C6), 24.3 (C19), 23.6 (C5), 16.7 (14-Me). IR: 3440, 2933, 1738, 1440, 1200, 1091, 983 cm-1. MS (ESI): m/z = 509.5 (C25H42O9Na).

23

A referee pointed out that an intact C1-C22 fragment is potentially available from degradation of the natural product. At this point, we have not yet contacted the isolation group to explore the possibility for such degradation studies on very limited amounts of natural spirastrellolide.