References and Notes
1
Williams DE.
Roberge M.
Van Soest R.
Andersen RJ.
J. Am. Chem. Soc.
2003,
125:
5296
2
Williams DE.
Lapawa M.
Feng X.
Tarling T.
Roberge M.
Andersen RJ.
Org. Lett.
2004,
6:
2607
3 Paterson and coworkers have recently reported the synthesis of two diastereomeric C1-C25 fragments, see: Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Org. Lett.
2005,
7:
4125
For other synthetic studies, see:
4a
Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Org. Lett.
2005,
7:
4121
4b
Paterson I.
Anderson EA.
Dalby SM.
Synthesis
2005,
3225
4c
Liu J.
Hsung RP.
Org. Lett.
2005,
7:
2273
4d Wang, C.; Forsyth, C. J. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13-17, 2005, ORGN-414.
5 All new compounds gave spectroscopic data in agreement with the assigned structures.
6
Brown HC.
Randad RS.
Bhat KS.
Zaidlewicz M.
Racherla US.
J. Am. Chem. Soc.
1990,
112:
2389
Compound 9 was an intermediate in our synthesis of SCH 351448, see:
7a
Bhattacharjee A.
Soltani O.
De Brabander JK.
Org. Lett.
2002,
4:
481
7b
Soltani O.
De Brabander JK.
Org. Lett.
2005,
7:
2791
8
Kubota K.
Leighton JL.
Angew. Chem. Int. Ed.
2003,
42:
946
9 2-
d
Icr2Ball is enantiocomplimentary to 4-
d
Icr2Ball, the enantiomer of which is not available, see ref. 6.
10 Paterson and coworkers have prepared the ethyl ester analogue of ent-9 based on our
[7a]
route to 9 using 2-
d
Icr2Ball in 90% ee, see ref. 3.
11 For ee determination, see Supporting Information of ref. 7a.
12 Prepared in three steps from commercially available 1,3-propanediol, see: Theodorakis EA.
Drouet KE.
Chem. Eur. J.
2000,
6:
1987
13a
Ohira S.
Synth. Commun.
1989,
19:
561
13b
Müller S.
Liepold B.
Roth GJ.
Bestmann HJ.
Synlett
1996,
521
Prepared in two steps from commercially available divinyl carbinol, see:
14a
Romero A.
Wong C.-H.
J. Org. Chem.
2000,
65:
8264
14b
Okamoto S.
Kobayashi Y.
Kato H.
Hori K.
Takahashi T.
Tsuji J.
Sato F.
J. Org. Chem.
1988,
53:
5590
15a
Ko S.
Na Y.
Chang S.
J. Am. Chem. Soc.
2002,
124:
750
15b
Wang L.
Floreancig PE.
Org. Lett.
2004,
6:
569
15c
Wang L.
Floreancig PE.
Org. Lett.
2004,
6:
4207
16 To a solution of 11 (0.158 g, 0.444 mmol) in anhyd THF (3 mL) at -78 °C under nitrogen was added n-BuLi (2.5 M in hexane, 0.19 mL, 0.48 mmol) and the solution turned bright yellow. The reaction mixture was stirred at r.t. for 10 min before being cooled to -78 °C. A solution of the Weinreb amide 12 (0.229 g, 0.488 mmol) in THF (1.5 mL) was added dropwise, after which the mixture was warmed to r.t. and stirred for an additional 1.5 h. The reaction was quenched with sat. aq NH4Cl (15 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried over Na2SO4 and concentrated. The residue was puri-fied by column chromatography (hexanes-EtOAc, 20:1 to 15:1) to give the product 18 as a colorless oil (0.278 g, 82%). [α]D
25 -4.9 (c 2.7, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.24 (2 H, d, J = 8.8 Hz), 6.86 (2 H, d, J = 8.8 Hz), 4.43 (2 H, s), 3.93 (1 H, dt, J = 8.0, 4.0 Hz), 3.83 (1 H, dd, J = 9.6, 4.8 Hz), 3.79 (3 H, s), 3.62-3.69 (2 H, m), 3.37-3.48 (2 H, m), 3.32 (3 H, s), 3.19 (1 H, dt, J = 8.0, 4.0 Hz), 2.73-2.80 (1 H, m), 2.54-2.70 (2 H, m), 1.76-1.87 (3 H, m), 1.66 (1 H, td, J = 13.6, 6.0 Hz), 1.20 (3 H, d, J = 7.2 Hz), 0.95 (9 H, t, J = 8.0 Hz), 0.92 (9 H, t, J = 8.0 Hz), 0.88 (9 H, s), 0.63 (6 H, q, J = 8.0 Hz), 0.58 (6 H, q, J = 8.0 Hz), 0.03 (6 H, s). 13C NMR (100 MHz, CDCl3): δ = 188.1, 159.3, 130.5, 129.5, 113.9, 95.3, 82.4, 81.6, 73.2, 72.8, 71.9, 70.8, 59.7, 58.4, 55.4, 41.9, 37.0, 32.9, 26.1, 24.4, 18.4, 14.9, 7.1, 7.0, 5.2, 5.1, -5.2, -5.2. IR: 2955, 2877, 1676, 1514, 1249, 1108, 834, 742 cm-1. MS (ESI): m/z = 773.60 (C40H74O7Si3Na).
17 Product 19 (colorless oil): [α]D
25 +55.8 (c 2.18, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.25 (2 H, d, J = 8.0 Hz), 6.84 (2 H, d, J = 8.0 Hz), 5.71 (1 H, d, J = 10.0 Hz), 5.58 (1 H, dd, J = 10.0, 2.4 Hz), 4.52 (1 H, d, J = 12.0 Hz), 4.48 (1 H, d, J = 12.0 Hz), 3.85-3.90 (1 H, m), 3.77 (3 H, s), 3.67-3.76 (4 H, m), 3.53 (1 H, dd, J = 10.0, 6.0 Hz), 3.27 (3 H, s), 3.15 (1 H, td, J = 9.6, 4.8 Hz), 2.11 (1 H, td, J = 7.2, 2.0 Hz), 2.02-2.06 (1 H, m), 1.92-1.99 (1 H, m), 1.79-1.82 (1 H, m), 1.54-1.73 (3 H, m), 0.95 (3 H, d, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 159.2, 135.4, 130.4, 129.5, 128.5, 113.7, 94.0, 74.8, 73.5, 73.0, 71.6, 69.4, 59.4, 56.4, 55.3, 35.1, 34.0, 33.6, 24.4, 16.7. IR: 3467, 2935, 1514, 1456, 1248, 1100, 1037, 985, 820 cm-1. MS (ESI): m/z = 415.15 (C22H32O6Na).
18
Evans DA.
Dart MJ.
Duffy JL.
Yang MG.
J. Am. Chem. Soc.
1996,
118:
4322
19 To a solution of ent-5 (36.7 mg, 0.171 mmol) and 2,6-lutidine (140 µL, 1.20 mmol) in anhyd CH2Cl2 (1.2 mL) at -78 °C was added dropwise trimethylsilyl trifluoro-methanesulfonate (186 µL, 1.03 mmol). After stirring for 1.5 h at -78 °C, the reaction was quenched with sat. aq NaHCO3 (5 mL) and the aqueous phase was extracted with hexane (3 × 5 mL). The organic layers were combined, dried over Na2SO4 and concentrated to give a colorless oil (46.0 mg). This crude silylenol ether and aldehyde 6 (66.9 mg, 0.172 mmol) were dissolved in anhyd CH2Cl2 (1.1 mL) and cooled to -78 °C. BF3·OEt2 (27.5 µL, 0.223 mmol) was slowly added and the solution was stirred for 2 h at -78 °C. The reaction was quenched with sat. aq NaHCO3 (5 mL) and the aqueous phase was extracted with CH2Cl2 (3 × 5 mL). The organic layers were combined, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (hexanes-EtOAc, 2:1 to 2:3) to give, in order of elution, the recovered methyl ketone ent-5 (12.3 mg), the minor 1,3-syn aldol product (6.0 mg, 8.7% based on recovered starting material) and the 1,3-anti aldol product 21 (46.2 mg, 76% based on recovered starting material).
Compound 21: [α]D
25 +24.3 (c 1.1, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.26 (2 H, d, J = 8.4 Hz), 6.86 (2 H, d, J = 8.4 Hz), 5.71 (1 H, d, J = 9.6 Hz), 5.60 (1 H, dd, J = 9.6, 2.0 Hz), 4.55 (1 H, d, J = 12.0 Hz), 4.47 (1 H, d, J = 12.0 Hz), 4.39-4.45 (1 H, m), 3.80 (3 H, s), 3.77-3.84 (4 H, m), 3.66 (3 H, s), 3.64-3.68 (1 H, m), 3.55-3.60 (2 H, m), 3.28 (3 H, s), 3.18-3.23 (1 H, m), 2.62-2.69 (3 H, m), 2.36-2.52 (3 H, m), 2.10-2.14 (1 H, m), 2.01-2.05 (1 H, m), 1.51-1.84 (9 H, m), 1.15-1.23 (2 H, m), 0.97 (3 H, d, J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): δ = 209.6, 171.9, 159.2, 135.3, 130.6, 129.6, 128.6, 113.8, 94.1, 74.8, 74.7, 74.5, 73.4, 73.1, 70.7, 69.3, 64.1, 56.4, 55.4, 51.9, 50.9, 50.4, 41.6, 39.6, 34.2, 33.8, 31.2, 30.9, 24.3, 23.3, 16.8. IR: 3490, 2933, 1739, 1514, 1248, 1100, 1036, 985, 821, 728 cm-1. MS (ESI): m/z = 627.30 (C33H48O10Na).
Compound 20 was prepared using the same procedure in 59% yield and 11:1 dr; [α]D
25 +27.0 (c 0.22, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.26 (2 H, d, J = 8.4 Hz), 6.86 (2 H, d, J = 8.4 Hz), 5.71 (1 H, dd, J = 10.0, 1.6 Hz), 5.59 (1 H, dd, J = 10.0, 1.6 Hz), 4.55 (1 H, d, J = 12.0 Hz), 4.46 (1 H, d, J = 12.0 Hz), 4.39-4.45 (1 H, m), 3.80 (3 H, s), 3.75-3.83 (4 H, m), 3.65 (3 H, s), 3.62-3.69 (2 H, m), 3.58 (1 H, dd, J = 10.4, 5.6 Hz), 3.28 (3 H, s), 3.18-3.24 (1 H, m), 2.58-2.68 (3 H, m), 2.33-2.52 (3 H, m), 2.09-2.13 (1 H, m), 2.01-2.06 (1 H, m), 1.50-1.84 (9 H, m), 1.16-1.26 (2 H, m), 0.96 (3 H, d, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 209.5, 171.9, 159.3, 135.3, 130.7, 129.6, 128.64, 113.8, 94.1, 74.7, 74.7, 74.6, 73.4, 73.1, 70.7, 69.3, 64.0, 56.4, 55.5, 51.9, 51.1, 50.4, 41.6, 39.6, 34.2, 33.8, 31.2, 31.0, 24.3, 23.3, 16.8. IR 3464, 2934, 1738, 1514, 1248, 1100, 1037, 985, 736 cm-1. MS (ESI): m/z = 627.30 (C33H48O10Na).
20 The absolute stereochemistry at C11 was confirmed via Mosher ester derivatization (R- and S-esters) according to: Ohtani I.
Kusumi T.
Kashman Y.
Kakisawa H.
J. Am. Chem. Soc.
1991,
113:
4092
21
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
22 Compound 3: [α]D
25 +43.8 (c 0.16, CHCl3). 1H NMR (400 MHz, benzene-d
6): δ = 5.57-5.63 (2 H, m, H15, H16), 4.66 (1 H, app t, J = 7.6 Hz, H11), 4.17-4.21 (3 H, m, H9, H13, H21), 4.06 (1 H, dd, J = 11.6, 1.2 Hz, H22b), 3.86 (1 H, dd, J = 10.8, 5.6 Hz, H22a), 3.53-3.58 (1 H, m, H3), 3.45 (3 H, s, CO2Me), 3.20 (1 H, app t, J = 10.4 Hz, H7), 3.02 (3 H, s, OMe), 3.00-3.05 (1 H, m, H20), 2.22 (1 H, dd, J = 14.8, 8.8 Hz, H2b), 1.98-2.11 (2 H, m, H2a, H14), 1.84-1.94 (3 H, m, H12b, H18b, H19b), 1.72-1.76 (1 H, m, H19a), 1.60-1.69 (4 H, m, H8a, H8b, H10b, H12a), 1.48-1.52 (1 H, m, H18a), 1.36-1.39 (1 H, m, H5b), 1.21 (1 H, d, J = 14.0 Hz, H10a), 1.06-1.12 (3 H, m, H4b, H5a, H6b), 0.85-1.00 (2 H, m, H4a, H6a), 0.81 (3 H, d, J = 7.2 Hz). 13C NMR (75 MHz, benzene-d
6): δ = 171.3 (C1), 135.2 (C15), 129.3 (C16), 94.0 (C17), 79.4 (C7), 75.7 (C20), 74.7 (C3), 74.4 (C21), 71.1 (C13), 70.0 (C9), 65.2 (C11), 63.2 (C22), 55.8 (20-OMe), 51.4 (-CO2Me), 44.3 (C10), 43.1 (C8), 41.3 (C2), 40.9 (C12), 34.9 (C14), 34.3 (C18), 31.5 (C4), 30.9 (C6), 24.4 (C2), 23.2 (C5), 16.7 (14-Me). IR: 3450, 2933, 1738, 1438, 1090, 1044, 982 cm-1. MS (ESI): m/z = 509.5 (C25H42O9Na).
Compound 4: [α]D
25 +46.7 (c 0.18, CHCl3). 1H NMR (400 MHz, benzene-d
6): δ = 5.59 (2 H, app s, H15, H16), 4.62 (1 H, app t, J = 8.8 Hz, H11), 4.36 (1 H, br s, H9), 4.12-4.17 (2 H, m, H13, H21), 4.05 (1 H, dd, J = 11.2, 1.6 Hz, H22b), 3.82 (1 H, dd, J = 11.2, 6.0 Hz, H22a), 3.61-3.66 (1 H, m, H3), 3.51-3.55 (1 H, m, H7), 3.47 (3 H, s, CO2Me), 3.01 (3 H, s, 20-OMe), 2.96-3.01 (1 H, m, H20) 2.33 (1 H, dd, J = 14.8, 8.8 Hz, H2b), 2.01-2.09 (2 H, m, H2a, H14), 1.80-1.93 (3 H, m, H12b, H18b, H19b), 1.66-1.74 (2 H, m, H10b, H19a), 1.50-1.60 (3 H, m, H8a, H8b, H12a), 1.45-1.50 (2 H, m, H5b, H18a), 1.33-1.39 (1 H, m, H10a), 1.08-1.19 (3 H, m, H4b, H5a, H6b), 0.86-0.96 (2 H, m, H4a, H6a), 0.81 (3 H, d, J = 6.8 Hz, 14-Me). 13C NMR (75 MHz, benzene-d
6): δ = 171.7 (C1), 135.3 (C15), 129.2 (C16), 94.0 (C17), 75.9 (C20), 75.7 (C7), 74.6 (C3), 74.4 (C21), 71.0 (C13), 66.0 (C9), 65.1 (C11), 63.4 (C22), 55.7 (20-OMe), 51.4 (CO2Me), 44.4 (C10), 43.0 (C8), 41.4 (C2), 40.6 (C12), 34.8 (C14), 34.2 (C18), 31.2 (C4), 31.0 (C6), 24.3 (C19), 23.6 (C5), 16.7 (14-Me). IR: 3440, 2933, 1738, 1440, 1200, 1091, 983 cm-1. MS (ESI): m/z = 509.5 (C25H42O9Na).
23 A referee pointed out that an intact C1-C22 fragment is potentially available from degradation of the natural product. At this point, we have not yet contacted the isolation group to explore the possibility for such degradation studies on very limited amounts of natural spirastrellolide.