RSS-Feed abonnieren
DOI: 10.1055/s-2006-940015
Körperzusammensetzung - Was kann man wie und mit welchem Wert in der Praxis messen?
Body Composition Analysis - What can be Measured with Practical Value?Publikationsverlauf
Publikationsdatum:
02. August 2006 (online)
Zusammenfassung
Die Messung der Körperzusammensetzung dient in der ernährungsmedizinischen Praxis der Interpretation von Stoffwechselleistungen, zur Beurteilung des Therapieerfolges und des gesundheitlichen Risikos bei Über- oder Untergewicht und der Einschätzung der Prognose bei chronischen Erkrankungen. Der vorliegende Beitrag vergleicht die in der Medizin und Ernährungswissenschaft praktisch angewandten Methoden wie Anthropometrie, Nah-Infrarot-Messtechnik, Bioelektrische Impedanzanalyse, Air-Displacement-Plethysmography, Dual Energy X-ray Absorptiometry und bildgebende Verfahren zur Bestimmung der Körperzusammensetzung hinsichtlich ihrer Zielgrößen (z. B. Körperfettmasse, viszerales Fettgewebe, fettfreie Masse, Körperzellmasse, Muskelmasse, Organmasse, Phasenwinkel der Impedanz etc.), ihrer Genauigkeit und Präzision sowie im Hinblick auf Praktikabilität und Kosten. Der Methodenvergleich soll die Entscheidung für die jeweilige Methodik erleichtern und einen kritischen Umgang mit den Messergebnissen ermöglichen. Aufgrund der Annahmen der jeweiligen Methode sowie der Verfügbarkeit von Referenzdatenbanken ergeben sich in der Praxis Grenzen in der Anwendung bei speziellen Gruppen wie z. B. Kindern, alten oder kranken Menschen.
Abstract
Body composition research is used for normalization and interpretation of metabolic data as well as the assessment of nutritional intervention outcome or metabolic risk in overweight and underweight subjects. The present work sets out to compare anthropometry, near-infrared interactance, bioelectrical impedance analysis, air-displacement plethysmography, dual energy X-ray absorptiometry and imaging technology with respect to their outcome variables (e. g. fat mass, visceral fat mass, fat free mass, body cell mass, skeletal muscle mass, organ masses or phase angle), their validity and precision as well as their practical value and costs. Considering these criteria will allow to choose applications and facilitates a critical appraisal of the data. The underlying assumptions of the methods used for body composition analysis as well as the availability of appropriate reference data bases limits the practical application of the methods especially in groups like children, elderly or ill people.
Schlüsselwörter
Körperzusammensetzung - Bioelektrische Impedanzanalyse - Anthropometrie - Nah-Infrarot-Messtechnik - Air-Displacement-Plethysmographie - Dual-X-ray-Absorptiometrie - Magnetresonanztomographie - Computertomographie
Key words
Body composition analysis - bioelectrical impedance analysis - anthropometry - near-infrared interactance - air-displacement plethysmography - Dual X-ray absorptiometry - magnetic resonance imaging - computertomography
Literatur
- 1 Kyle U G, Bosaeus I, DeLorenzo A D, Deurenberg P, Elia M, Gomez J M, Heitmann B L, Kent-Smith L, Melchior J-C, Pirlich M, Scharfetter H, Schols A MWJ, Pichard C. ESPEN. Bioelectrical impedance analysis - part I: review of principles and methods. Clin Nutr. 2004; 23 1226-1243
- 2 Kyle U G, Bosaeus I, DeLorenzo A D, Deurenberg P, Elia M, Gomez J M, Heitmann B L, Kent-Smith L, Melchior J-C, Pirlich M, Scharfetter H, Schols A MWJ, Pichard C. ESPEN Bioelectrical impedance analysis - part II: utilization in clinical practice. Clin Nutr. 2004; 23 (6) 1430-1453
- 3 Cassady S L, Nielsen D H, Janz K F, Wu Y T, Cook J S, Hansen J R. Validity of near infrared body-composition analysis in children and adolescents. Med Sci Sports Exerc. 1993; 25 1185-1191
- 4 Elia M, Parkinson S A, Diaz E. Evaluation of near infra red interactance as a method for predicting body composition. Eur J Clin Nutr. 1990; 44 (2) 113-121
- 5 Fields D A, Goran M I, McCrory M A. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr. 2002; 75 (3) 453-467
- 6 Fuller N J, Jebb S A, Laskey M A, Coward W A, Elia M. Four-compartment model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci. 1992; 82 687-693
- 7 Ploeg G E Van der, Withers R T, Laforgia J. Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol. 2003; 94 499-506
- 8 Sopher A B, Thornton J C, Wang J, Pierson R N, Heymsfield S B, Horlick M. Measurement of percentage of body fat in 411 children and adolescents: A comparison of dual-energy x-ray absorptiometry with a four-compartment model. Pediatrics. 2004; 113 1285-1290
- 9 Prior B M, Cureton K J, Modlesky C M, Evans E M, Sloniger M A, Saunders M, Lewis R D. In vivo validation of whole body composition estimates from dual-energy x-ray absorptiometry. J Appl Physiol. 1997; 83 623-630
- 10 Salamone L M, Fuerst T, Visser M, Kern M, Lang T, Dockrell M, Cauley J A, Nevitt M, Tylavsky F, Lohman T G. Measurement of fat mass using DEXA: a validation study in elderly adults. J Appl Physiol. 2000; 89 345-352
- 11 Müller M J, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev. 2002; 3 (2) 113-122
-
12 Siri W E.
Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A Techniques for measuring body composition. Washington, DC; National Academy of Sciences 1961: 223-244 - 13 Lohman T G. Assessment of body composition in children. Pediatr Exerc Sci. 1989; 1 19-30
- 14 DuBois D, DuBois E F. A formula to estimate the approximate surface area if weight and height be known. Arch Intern Med. 1916; 17 863-871
- 15 Crapo R O, Morris A H, Clayton P D, Nixon C R. Lung volumes in healthy non-smoking adults. Bull Eur Physiopathol Respir. 1982; 18 419-425
- 16 Frederiks A M, Buuren S Van, Fekkes M, Verloove-Vanhorick S P, Wit J M. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice?. Eur J Pediatr. 2005; 164 216-222
- 17 Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß H C, Hesse V, Hippel A von, Jaeger U, Johnsen D, Korte W, Menner K, Müller G, Müller M J, Niemann-Pilatus A, Remer T, Schaefer F, Wittchen H-U, Zabransky S, Zellner K, Ziegler A, Hebebrand J. Perzentile für den Body-Mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd. 2001; 149 807-818
- 18 Kyle U G, Genton L, Slosman D O, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001; 17 534-541
- 19 Schutz Y, Kyle U G, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18 - 98y. Int J Obes. 2002; 26 953-960
- 20 Bosy-Westphal A, Danielzik S, Dörhöfer R P, Piccoli A, Müller M J. Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. Am J Clin Nutr. 2005; 82 (1) 60-68
Dr. Anja Bosy-Westphal
Institut für Humanernährung und Lebensmittelkunde · Christian-Albrechts-Universität
Düsternbrooker Weg 17
24105 Kiel
eMail: abosyw@nutrfoodsc.uni-kiel.de