Subscribe to RSS
DOI: 10.1055/s-2006-941568
Synthesis of 2′,3′-Cyclohexen Bicyclic Uridine Analogues Using Ring-Closure Metathesis
Publication History
Publication Date:
22 May 2006 (online)
![](https://www.thieme-connect.de/media/synlett/200609/lookinside/thumbnails/10.1055-s-2006-941568-1.jpg)
Abstract
The synthesis of two new 2′,3′-cyclohexen bicyclic uridine analogues is described. From 5′-protected uridine two successive tin radical-mediated allylations at 2′-C and 3′-C position followed by ring-closure olefin metathesis on the diene intermediate using Grubbs’ catalyst led to the formation of the six-membered ring.
Key words
antivirals - nucleic acid analogues - radical allylation - ring-closure metathesis
- 1
De Clercq E. J. Clin. Vir. 2004, 30: 115 - 2
De Clercq E. Biochim. Biophys. Acta 2002, 1587: 258 - 3
Brady RC.Bernstein DI. Antiviral Res. 2004, 61: 73 - 4
Papatheodoridis GV.Dimou E.Papadimitropoulos V. Am. J. Gastroenterology 2002, 97: 1618 - 5
Matsuda A.Sasaki T. Cancer Sci. 2004, 95: 105 -
6a
Saenger W. Principles of Nucleic Acid Structure Springer Verlag; New York: 1984. -
6b
Altona C.Sundaraalingam M. J. Am. Chem. Soc. 1972, 94; : . -
7a
Russ P.Schelling P.Scapozza L.Folkers G.De Clercq E.Marquez VE. J. Med. Chem. 2003, 46: 5045 -
7b
Marquez VE.Russ P.Alanso R.Siddiqui MA.Shin KJ.George C.Nicklaus MC.Dai F.Ford H. Nucleosides Nucleotides 1999, 18: 521 -
7c
Kvaerno L.Nielsen C.Wightman RH. J. Chem. Soc., Perkin Trans. 1 2000, 2903 -
8a
Meldgaard M.Wengel J. J. Chem. Soc., Perkin Trans. 1 2000, 3539 -
8b
Wengel J. Acc. Chem. Res. 1999, 32: 301 -
8c
Leumann CJ. Bioorg. Med. Chem. 2002, 10: 841 -
9a
Yoshimura Y.Matsuda A.Ueda T. Chem. Pharm. Bull. 1989, 37: 660 -
9b
Yagamata Y.Tomita K.Usui H.Sano T.Ueda T. Chem. Pharm. Bull. 1989, 37: 1971 -
9c
Matsuda A.Ueda T. Nippon Kagaku Kaishi 1981, 845 -
10a
Sekine M.Kurasawa O.Shohda K.Seio K.Wada W. J. Org. Chem. 2000, 65: 6515 -
10b
Sekine M.Kurasawa O.Shohda K.Seio K.Wada W. J. Org. Chem. 2000, 65: 3571 -
10c
Le Clezio I.Escudier JM.Vigroux A. Org. Lett. 2003, 5: 161 -
10d
Le Clezio I.Gornitzka H.Escudier JM.Vigroux A. J. Org. Chem. 2005, 70: 1620 - 11
Sorensen MH.Nielsen C.Nielsen P. J. Org. Chem. 2001, 66: 4878 - 12
Nielsen P.Pfundheller HM.Wengel J. Chem. Commun. 1997, 825 - 13
Nielsen P.Pfundheller HM.Olsen CE.Wengel J. J. Chem. Soc., Perkin Trans. 1 1997, 3423 - 14
Webb TR.Mitsuya H.Broder S. J. Med. Chem. 1988, 31: 1475 - 15
Sard H. Nucleosides Nucleotides 1994, 13: 2321 - 16
Okabe M.Sun RC. Tetrahedron Lett. 1989, 30: 2203 - 17
Beard AR.Butler PI.Mann J.Partlett NK. Carbohydr. Res. 1990, 205: 87 - 18
Wu JC.Chattopadhyaya J. Tetrahedron 1990, 46: 2587 - 19
Chun BK.Olgen S.Hong JH.Newton MG.Chu CK. J. Org. Chem. 2000, 65: 685 - 20
Hong JH.Chun BK.Chu CK. Tetrahedron Lett. 1998, 39: 225 - 21
Hossain N.Plavec J.Thibaudeau C.Chattopadhyaya J. Tetrahedron 1993, 49: 9079 - 22
Ewing DF.Fahmi NE.Len C.Mackenzie G.Pranzo A. J. Chem. Soc., Perkin Trans. 1 2000, 3561 - 23
Egron D.Périgaud C.Gosselin G.Aubertin AM.Faraj A.Sélouane A.Postel D.Len C. Bioorg. Med. Chem. Lett. 2003, 13: 4473 -
24a
Obika S.Hari Y.Sugimoto T.Sekiguchi M.Imanishi T. Tetrahedron Lett. 2000, 41: 8923 -
24b
Alauddin MM.Conti PS. Tetrahedron 1994, 50: 1699 -
24c
Hirota K.Kitade Y.Kanbe Y.Isobe Y.Maki Y. Synthesis 1993, 213 - 25
Xu Y.-Z.Zheng Q.Swann PF. J. Org. Chem. 1992, 57: 3839 - For recent reviews on radical-based reactions, see:
-
26a
Bar G.Parsons AF. Chem. Soc. Rev. 2003, 32: 251 -
26b
Renaud P.Sibi MP. Radicals in Organic Synthesis VCH; New York: 2001. -
26c
Sibi MP.Porter NA. Acc. Chem. Res. 1999, 32: 163 - For general reviews, see:
-
27a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
27b
Armstrong SK. J. Chem. Soc., Perkin Trans. 1 1998, 371 -
27c
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
27d
Dieters A.Martin SF. Chem. Rev. 2004, 104: 2199 ; and references cited therein - For recent examples of RCM in nucleosides field, see:
-
28a
Chen X.Wiemer DF. J. Org. Chem. 2003, 68: 6597 -
28b
Borsting P.Freitag M.Nielsen P. Tetrahedron 2004, 60: 10955 -
28c
Agrofoglio LA.Amblard F.Nolan SP.Charamon S.Gillaizeau I.Zevaco TA.Guenot P. Tetrahedron 2004, 60: 8397 -
28d
Freitag M.Thomassen H.Christensen NK.Petersen M.Nielsen P. Tetrahedron 2004, 60: 3775 -
28e
Busca P.Etheve-Quelquejeu M.Valéry J.-M. Tetrahedron Lett. 2003, 44: 9131 -
28f
Montembault M.Bourgougnon N.Lebreton J. Tetrahedron Lett. 2002, 43: 8091 -
28g
Ewing D.Glaçon V.Mackenzie G.Postel D.Len C. Tetrahedron Lett. 2002, 43: 3503 -
28h
Ewing D.Glaçon V.Mackenzie G.Postel D.Len C. Tetrahedron 2003, 59: 941 - For radical allylation at C-2′, see:
-
29a
Stork G.Zhang C.Gryaznov S.Schultz R. Tetrahedron Lett. 1995, 36: 6387 -
29b
Cicero DO.Neuner PJS.Franzese O.D’Onofrio C.Iribarren AM. Bioorg. Med. Chem. Lett. 1994, 7: 861 -
29c
De Mesmaeker A.Lebreton J.Waldner A.Fritsch V.Wolf RM.Freier SM. Synlett 1993, 733 -
29d
De Mesmaeker A.Lebreton J.Hoffmann P.Freier SM. Synlett 1993, 677 -
29e
Chu CK.Doboszewski WS.Ullas G. J. Org. Chem. 1989, 54: 2767 - For radical allylation at C-3′, see:
-
29f
Rozners E.Katkevica D.Bizdena E.Strömberg R. J. Am. Chem. Soc. 2003, 125: 12125 -
29g
Batoux N.Benhaddou-Zerrouki R.Bressolier P.Granet R.Laumont G.Aubertin A.-M.Krausz P. Tetrahedron Lett. 2001, 42: 1491 -
29h
De Mesmaeker A.Lesueur C.Bévièrre M.-O.Waldner A.Fritsch V.Wolf RM. Angew. Chem., Int. Ed. Engl. 1996, 35: 2790 -
29i
Fiandor J.Tam SY. Tetrahedron Lett. 1990, 31: 597 - 30
An H.Wang T.Maier MA.Manoharan M.Ross BS.Cook PD. J. Org. Chem. 2001, 66: 2789 - 31
Barton DHR.Jaszberenyi JC. Tetrahedron Lett. 1989, 30: 2619 -
34a
Oba M.Suyama M.Shimamura A.Nishiyama K. Tetrahedron Lett. 2003, 44: 4027 -
34b
Chu CK.Bhadti VS.Doboszewski B.Gu ZP.Kosugi Y.Pullaiah KC.Van Roey P. J. Org. Chem. 1989, 54: 2217 -
34c
Nair V.Buenger GS. J. Am. Chem. Soc. 1989, 111: 8502
References and Notes
Personal communication from Dr. Alain De Mesmaeker (Syngenta, Basel, Switzerland).
33
Representative Procedure for the Preparation of 3′-
C
-Allyluridine 25 and 26.
A degassed solution of thiocarbonate 24 (1.0 g, 1.56 mmol), Bu3SnAll (4.83 mL, 15.58 mmol, 10 equiv), AIBN (256 mg, 1.56 mmol, 1 equiv) and Bu3SnH (45 mg, 0.16 mmol, 0.1 equiv) in distilled benzene (1.5 mL, 1 mol/L) was stirred overnight at reflux. The solvent was removed under reduced pressure and purification by flash chromatography (30% Et2O-PE) afforded a mixture of diastereoisomers 25 and 26 (420 mg, 51%) as a white foam; 75% de [determined by HPLC performed using a Chrompack Inertsil column Intersil 250 × 3 mm with a flow of rate 1 mL/min (CH2Cl2), t
R = 10.5 min for minor diastereomer 26 and t
R = 11.1 min for major diastereomer 25; R
f
= 0.66 (30% Et2O-PE, single spot with these conditions)]. MS (CI/NH3): m/z 531(100) [M + NH3]+, 548.
Data for major diastereomer 25: 1H NMR (400 MHz, CDCl3): δ = 1.03 (s, 9 H, t-Bu), 1.80-2.50 (m, 6 H, H-2′, H-3′, H-6′, H-6′′, H-10′ and H-10′′), 3.60 and 4.00 (part AB of ABX system, 2 H, J = 2.3 Hz, J = 2.4 Hz, J = 11.8 Hz, H-5′), 3.80 (m, 1 H, H-4′), 4.90-5.09 (m, 4 H, H-8′, H-9′, H-12′ and H-13′), 5.35 (d, 1 H, J = 8.2 Hz, H-5), 5.45-5.80 (m, 2 H, H-7′ and H-11′), 5.83 (d, 1 H, J = 4,3 Hz, H-1′), 7.25-7.75 (m, 10 H, 2 × Ph), 7.95 (d, 1 H, J = 8.2 Hz, H-6), 8.55 (br s, 1 H, NH-3) ppm. 13C NMR (100 MHz, CDCl3): δ = 18.3 [(CH3)3
C-Si], 26.0 [(CH3)3C-Si], 29.6 (C-6′), 32.3 (C-10′), 38.3 (C-3′), 46.4 (C-2′), 63.5 (C-5′), 83.1 (C-4′), 87.8 (C-1′), 101.2 (C-5), 116.1 (C-8′), 116.3 (C-12′), 128.0-135.6 (2 × Ph), 129.2 (C-7′), 129.7 (C-11′), 139.4 (C-6), 149.3 (C=O), 162.1 (C=O) ppm.
Selected physico-chemical data for major diastereomer 19: R f = 0.23 (5% EtOH-CH2Cl2). 1H NMR (300 MHz, CD3COCD3): δ = 9.98 (br s, 1 H, NH), 8.30 (d, 1 H, J = 8.1 Hz, H6), 5.76-5.72 (m, 2 H, H7 ′ and H8 ′), 5.69 (d, 1 H, J = 2.5 Hz, H1 ′), 5.54 (d, 1 H, J = 8.1 Hz, H5), 4.38 (br s, 1 H, OH), 3.98 (dd, 1 H, J 4 ′-5 ′ = 2.6 Hz and J5 ′-5 ′= 12.1 Hz, H5 ′), 3.90 (dt, 1 H, J 4 ′-5 ′ = 2.6 Hz, J 3 ′-4 ′ = 7.9 Hz, H4 ′), 3.82 (dd, 1 H, J 4 ′-5 ′= 2.6 Hz and J 5 ′-5 ′ = 12.1 Hz, H5 ′), 2.56 (m, 1 H, H2 ′), 2.54 (m, 1 H, H3 ′), 2.43-2.27 (m, 2 H, H6 ′eq and H9 ′eq), 2.09-1.96 (m, 2 H, H6 ′ax and H9 ′ax) ppm. 13C NMR (75 MHz, CD3SOCD3): δ = 163.2 (C4), 150.6 (C2), 140.5 (C6), 125.0 (C8′ or C7′), 124.3 (C8′ or C7′), 100.6 (C5), 89.2 (C1′), 84.9 (C4′), 60.5 (C5′), 40.2 (C2′), 32.2 (C3′), 22.9 (C6′), 22.9 (C9′) ppm. HRMS (ESI): m/z calcd for C13H16N2O4Na [M + Na+]: 287.1008; found: 287.1004.
36Selected physico-chemical data for minor diastereomer 20: R f = 0.26 (5% EtOH-CH2Cl2). 1H NMR (300 MHz, CD3COCD3): δ = 9.98 (br s, 1 H, NH), 8.15 (d, 1 H, J = 8.1 Hz, H6), 5.88 (d, 1 H, J = 7.9 Hz, H1 ′), 5.77 (m, 1 H, J = 11.9 Hz, H8 ′), 5.71 (m, 1 H, J = 11.9 Hz, H7 ′), 5.60 (d, 1 H, J = 8.1 Hz, H5), 4.27 (br s, 1 H, OH), 4.22 (dt, 1 H, J 4 ′-5 ′ = 2.6, 3.3 Hz, J 3 ′-4 ′ = 6.6 Hz, H4 ′), 3.89 (dd, 1 H, J 4 ′-5 ′ = 3.3 Hz and J 5 ′-5 ′ = 11.9 Hz, H5 ′), 3.76 (dd, 1 H, J 4 ′-5 ′ = 2.6 Hz and J 5 ′-5 ′ = 11.9 Hz, H5 ′), 2.38-2.28 (m, 2 H, H2 ′ and H3 ′), 2.28 (m, 1 H, H6 ′eq), 2.30-2.20 (m, 2 H, H9 ′ax and H9 ′ eq), 2.00 (m, 1 H, H6 ′ax) ppm. 13C NMR (75 MHz, CD3SOCD3): δ = 163.0 (C4), 150.8 (C2), 140.6 (C6), 126.8 (C8′), 125.7 (C7′), 101.8 (C5), 87.5 (C1′), 79.7 (C4′), 61.6 (C5′), 42.9 (C2′), 40.6 (C3′), 26.8 (C6′), 25.3 (C9′) ppm. HRMS (ESI): m/z calcd for C13H16N2O4Na [M + Na+]: 287.1008; found: 287.0995.
37Preparative HPLC was performed using a Chrompack Inertsil column Intersil 250 × 10 mm with a flow of rate 1 mL/min (CH2Cl2-MeOH, 95:5) with t R = 31.0 min for minor diastereomer 20 and t R = 34.8 min for major diastereomer 19.