References and Notes
1a
Seebach D.
Matthews JL.
Chem. Commun.
1997,
2015
1b
Seebach D.
Overhand M.
Kühnle FNM.
Martinoni B.
Oberer L.
Hommel U.
Widmer H.
Helv. Chim. Acta
1996,
79:
913
2
Appella DH.
Christianson LA.
Karle IL.
Powel DR.
Gellman SH.
J. Am. Chem. Soc.
1996,
118:
13071
3a
Cheng RP.
Gellman SH.
DeGrado WF.
Chem. Rev.
2001,
101:
3219
3b
Abele S.
Seebach D.
Eur. J. Org. Chem.
2000,
1
3c
Steer DL.
Lew RA.
Perlmutter P.
Smith AI.
Aguilar M.-I.
Curr. Med. Chem.
2002,
9:
811
3d
Seebach D.
Beck AK.
Bierbaume DJ.
Chem. Biodiversity
2004,
1:
1111
For leading references, see:
4a
Fülöp F.
Chem. Rev.
2001,
101:
2181
4b
North M.
J. Peptide Sci.
2000,
6:
301
4c
Kuhl A.
Hahn MG.
Dumić M.
Mittendorf J.
Amino Acids
2005,
29:
89
4d
Gnad F.
Reiser O.
Chem. Rev.
2003,
103:
1603
5a
Izquierdo S.
Rùa F.
Sbai A.
Parella T.
Alvarez-Larena A.
Branchadell V.
Ortuño RM.
J. Org. Chem.
2005,
70:
7963
5b
Izquierdo S.
Martín-Vilà M.
Moglioni AG.
Branchadell V.
Ortuño RM.
Tetrahedron: Asymmetry
2002,
13:
2403
5c
Martín-Vilà M.
Muray E.
Aguado GP.
Alvarez-Larena A.
Branchadell V.
Minguillón C.
Giralt E.
Ortuño RM.
Tetrahedron: Asymmetry
2000,
11:
3569
Different synthetic approaches have been outlined:
6a
Ortuño RM.
Moglioni AG.
Moltrasio GY.
Curr. Org. Chem.
2005,
9:
237
6b
Bolm C.
Schiffers I.
Atodiresei I.
Hackenberger CPR.
Tetrahedron: Asymmetry
2003,
14:
3455
6c
Kennewell PD.
Matharu SS.
Taylor JB.
Westwood R.
Sammes PG.
J. Chem. Soc., Perkin. Trans. 1
1982,
2563
6d
Brannock KC.
Bell A.
Burpitt RD.
Kelly CA.
J. Org. Chem.
1964,
29:
801
7a
Mittendorf J.
Kunisch F.
Matzke M.
Militzer H.-C.
Schmidt A.
Schönfeld W.
Bioorg. Med. Chem. Lett.
2003,
13:
433
7b
Mitsudo T.-A.
Zhang S.-W.
Satake N.
Kondo T.
Watanabe Y.
Tetrahedron Lett.
1992,
33:
5533
7c
Stoermer R.
Schenk F.
Chem. Ber.
1928,
61:
2318
8
Yuan P.
Driscoll MR.
Raymond SJ.
Hansen DE.
Blatchly RA.
Tetrahedron Lett.
1994,
35:
6195
9 Recently, an elegant intramolecular [2+2]-photocyclo-addition approach was described for the preparation of constrained bicyclic β-amino acid derivatives: Basler B.
Schuster O.
Bach T.
J. Org. Chem.
2005,
70:
9798
10
Aitken DJ.
Gauzy C.
Pereira E.
Tetrahedron Lett.
2002,
43:
6177
Ethylene is a convenient partner for intermolecular [2+2] photocycloadditions with enone-type reagents; for illustrative recent examples, see:
11a
Gu X.
Xian M.
Roy-Faure S.
Bolte J.
Aitken DJ.
Gefflaut T.
Tetrahedron Lett.
2006,
47:
193
11b
Furutani A.
Katayama K.
Uesima Y.
Ogura M.
Tobe Y.
Kurosawa H.
Tsutsumi K.
Morimoto T.
Kakiuchi K.
Chirality
2006,
18:
217
11c
Gauzy C.
Pereira E.
Faure S.
Aitken DJ.
Tetrahedron Lett.
2004,
45:
7095
11d
Piers E.
Orellana A.
Synthesis
2001,
2138
11e
de March P.
Figueredo M.
Font J.
Raya J.
Org. Lett.
2000,
2:
163
11f
Tsujishima H.
Nakatani K.
Shimamoto K.
Shigeri Y.
Yumoto N.
Ohfune Y.
Tetrahedron Lett.
1998,
39:
1193
12a
Wagner PJ.
Bucheck DJ.
J. Am. Chem. Soc.
1970,
92:
181
12b
Khattak MN.
Wang SY.
Tetrahedron
1972,
28:
945
12c
Birnbaum GI.
Dunston JM.
Szabo AG.
Tetrahedron Lett.
1971,
12:
947
12d
Shim SC.
Lee SH.
Photochem. Photobiol.
1979,
29:
1035
13a
Wexler AJ.
Balchunis RJ.
Swenton JS.
J. Org. Chem.
1984,
49:
2733
13b
Wexler AJ.
Hyatt JA.
Raynolds PW.
Cottrell C.
Swenton JS.
J. Am. Chem. Soc.
1978,
100:
512
13c
Wexler AJ.
Swenton JS.
J. Am. Chem. Soc.
1976,
98:
1602
14a
Li SS.
Sun XL.
Ogura H.
Konda Y.
Sasaki T.
Toda Y.
Takayanagi H.
Harigaya Y.
Chem. Pharm. Bull.
1995,
43:
144
14b
Ishikawa I.
Itoh T.
Takayanagi H.
Oshima J.-i.
Kawahara N.
Mizuno Y.
Ogura H.
Chem. Pharm. Bull.
1991,
39:
1922
15
Maleski R.
Morrison H.
Mol. Photochem.
1972,
4:
507
16
Aoyama H.
Hatori H.
Tetrahedron
1990,
46:
3781
17 Compound 1c was obtained from 5-iodouracil by Suzuki reaction with phenylboronic acid.
18
Fang W.-P.
Cheng Y.-T.
Cheng Y.-R.
Cherng Y.-J.
Tetrahedron
2005,
61:
3107
19
Harnden MR.
Hurst DT.
Aust. J. Chem.
1990,
43:
47
20
Goto S.
Yamanaka A.
Kagara K.
Yazawa H.
Chem. Express
1988,
3:
211
21 Compound 1r was obtained by esterification of orotic acid in excess n-hexanol (as solvent) in the presence of anhydrous HCl.
22
Kunieda T.
Witkop B.
J. Am. Chem. Soc.
1971,
93:
3493
23a
Ingold CK.
Sako S.
Thorpe JF.
J. Chem. Soc. Trans.
1922,
121:
1177
23b
Garcia MJ.
Azerad R.
Tetrahedron: Asymmetry
1997,
8:
85
24
Rachina V.
Blagoeva I.
Synthesis
1982,
967
Both δ-keto acids were identified by comparison of 1H NMR and 13C NMR data with the literature. See:
25a For 5-oxo-hexanoic acid (6m): Griesbaum K.
Miclaus V.
Jung IC.
Quinkert R.-O.
Eur. J. Org. Chem.
1998,
627
25b For 5-oxo-5-phenylpentanoic acid (6n): Hon Y.-S.
Lin S.-W.
Lu L.
Chen Y.-J.
Tetrahedron
1995,
51:
5019
26
Aitken DJ.
Gauzy C.
Pereira E.
Tetrahedron Lett.
2004,
45:
2359
27
Representative Procedure for Photocycloaddition.
Compound 1j (0.250 g, 1.76 mmol) was introduced into a cylindrical water-cooled reactor containing a 1:1 mixture of acetone-H2O (160 mL), which was vented under a fume hood. The mixture was stirred at r.t. and degassed with argon for 30 min, then sat. with ethylene for 30 min. Then, whilst ethylene bubbling continued, the mixture was irradiated with a 400 W medium-pressure mercury lamp fitted with a Pyrex filter for 4 h. The solution was evaporated and the solid residue was washed with cyclohexane then acetone. The cyclobutane adduct 2j was obtained as a white solid in 86% yield (0.257 g, 1.51 mmol). Mp 146-148 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.78-1.88 (m, 3 H), 2.06-2.13 (m, 1 H), 3.43 (dd, J = 10.8, 5.3 Hz, 1 H), 3.60 (dd, J = 10.8, 6.0 Hz, 1 H), 3.79 (td, J = 7.1, 4.2 Hz, 1 H), 5.08 (br t, J = 5.4 Hz, 1 H), 7.69 (br s, 1 H), 10.03 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
6): δ = 22.8, 27.5, 46.9, 48.8, 63.9, 152.4, 174.7 ppm. MS (ES+): m/z = 193 [MNa]+. HRMS (ES+): m/z calcd for C7H10N2O3Na: 193.0589; found: 193.0597.
Representative Procedure for Heterocyclic Ring-Opening.
Compound 2j (0.245 g, 1.44 mmol) was dissolved in 0.5 M NaOH solution (17.6 mL) and stirred overnight at r.t. Cation exchange resin (Bio-Rad AG 50W-X8, H+, 20-50 mesh) was then added until pH was about 4. Filtration and then evaporation of H2O left the desired compound 3j as a white paste in 87% yield (0.236 g, 1.25 mmol). 1H NMR (400 MHz, DMSO-d
6): δ = 1.62-1.74 (m, 1 H), 1.85-1.98 (m, 2 H), 2.04-2.15 (m, 1 H), 3.49 (d, J = 10.8 Hz, 1 H), 3.61 (d, J = 10.8 Hz, 1 H), 4.13 (q, J = 8.9 Hz, 1 H), 4.80 (br s, 1 H), 5.56 (s, 2 H), 6.16 (d, J = 8.9 Hz, 1 H), 12.25 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
6): δ = 20.5, 25.6, 47.5, 57.6, 64.6, 157.8, 174.7 ppm. MS (ES+): m/z = 189 [MH]+, 211 [MNa]+. HRMS (ES+): m/z calcd for C7H12N2O4Na: 211.0695; found: 211.0691.
Representative Procedure for Diazotization.
Compound 3j (0.180 g, 0.96 mmol) was dissolved in 3.5 M HCl solution (22 mL). Then, 1 equiv of NaNO2 (0.066 g; 0.96 mmol) was added and the mixture was stirred overnight at r.t. The solution was deposited on a cation-exchange column (Dowex 5 × 8 W, H+, 50-100 mesh). The column was washed with H2O until the eluent was neutral, then the amino acid was eluted with 1 M NH4OH. Pure product 4j was recovered after evaporation of appropriate fractions as a white solid in 70% yield (0.097 g, 0.67 mmol). Mp 91-94 °C. 1H NMR (400 MHz, D2O): δ = 1.77-1.89 (m, 1 H), 1.92-2.18 (m, 2 H), 2.13-2.25 (m, 1 H), 3.55 (d, J = 11.4 Hz, 1 H), 3.72 (d, J = 11.4 Hz, 1 H), 3.68-3.72 (m, 1 H) ppm. 13C NMR (100 MHz, D2O): δ = 22.5, 23.3, 47.9, 52.7, 65.9, 180.7 ppm. MS (ES+): m/z = 146 [MH]+, 168 [MNa]+. HRMS (ES+): m/z calcd for C6H12NO3: 146.0817; found: 146.0822.