References and Notes
<A NAME="RG08306ST-1A">1a</A>
Seebach D.
Matthews JL.
Chem. Commun.
1997,
2015
<A NAME="RG08306ST-1B">1b</A>
Seebach D.
Overhand M.
Kühnle FNM.
Martinoni B.
Oberer L.
Hommel U.
Widmer H.
Helv. Chim. Acta
1996,
79:
913
<A NAME="RG08306ST-2">2</A>
Appella DH.
Christianson LA.
Karle IL.
Powel DR.
Gellman SH.
J. Am. Chem. Soc.
1996,
118:
13071
<A NAME="RG08306ST-3A">3a</A>
Cheng RP.
Gellman SH.
DeGrado WF.
Chem. Rev.
2001,
101:
3219
<A NAME="RG08306ST-3B">3b</A>
Abele S.
Seebach D.
Eur. J. Org. Chem.
2000,
1
<A NAME="RG08306ST-3C">3c</A>
Steer DL.
Lew RA.
Perlmutter P.
Smith AI.
Aguilar M.-I.
Curr. Med. Chem.
2002,
9:
811
<A NAME="RG08306ST-3D">3d</A>
Seebach D.
Beck AK.
Bierbaume DJ.
Chem. Biodiversity
2004,
1:
1111
For leading references, see:
<A NAME="RG08306ST-4A">4a</A>
Fülöp F.
Chem. Rev.
2001,
101:
2181
<A NAME="RG08306ST-4B">4b</A>
North M.
J. Peptide Sci.
2000,
6:
301
<A NAME="RG08306ST-4C">4c</A>
Kuhl A.
Hahn MG.
Dumić M.
Mittendorf J.
Amino Acids
2005,
29:
89
<A NAME="RG08306ST-4D">4d</A>
Gnad F.
Reiser O.
Chem. Rev.
2003,
103:
1603
<A NAME="RG08306ST-5A">5a</A>
Izquierdo S.
Rùa F.
Sbai A.
Parella T.
Alvarez-Larena A.
Branchadell V.
Ortuño RM.
J. Org. Chem.
2005,
70:
7963
<A NAME="RG08306ST-5B">5b</A>
Izquierdo S.
Martín-Vilà M.
Moglioni AG.
Branchadell V.
Ortuño RM.
Tetrahedron: Asymmetry
2002,
13:
2403
<A NAME="RG08306ST-5C">5c</A>
Martín-Vilà M.
Muray E.
Aguado GP.
Alvarez-Larena A.
Branchadell V.
Minguillón C.
Giralt E.
Ortuño RM.
Tetrahedron: Asymmetry
2000,
11:
3569
Different synthetic approaches have been outlined:
<A NAME="RG08306ST-6A">6a</A>
Ortuño RM.
Moglioni AG.
Moltrasio GY.
Curr. Org. Chem.
2005,
9:
237
<A NAME="RG08306ST-6B">6b</A>
Bolm C.
Schiffers I.
Atodiresei I.
Hackenberger CPR.
Tetrahedron: Asymmetry
2003,
14:
3455
<A NAME="RG08306ST-6C">6c</A>
Kennewell PD.
Matharu SS.
Taylor JB.
Westwood R.
Sammes PG.
J. Chem. Soc., Perkin. Trans. 1
1982,
2563
<A NAME="RG08306ST-6D">6d</A>
Brannock KC.
Bell A.
Burpitt RD.
Kelly CA.
J. Org. Chem.
1964,
29:
801
<A NAME="RG08306ST-7A">7a</A>
Mittendorf J.
Kunisch F.
Matzke M.
Militzer H.-C.
Schmidt A.
Schönfeld W.
Bioorg. Med. Chem. Lett.
2003,
13:
433
<A NAME="RG08306ST-7B">7b</A>
Mitsudo T.-A.
Zhang S.-W.
Satake N.
Kondo T.
Watanabe Y.
Tetrahedron Lett.
1992,
33:
5533
<A NAME="RG08306ST-7C">7c</A>
Stoermer R.
Schenk F.
Chem. Ber.
1928,
61:
2318
<A NAME="RG08306ST-8">8</A>
Yuan P.
Driscoll MR.
Raymond SJ.
Hansen DE.
Blatchly RA.
Tetrahedron Lett.
1994,
35:
6195
<A NAME="RG08306ST-9">9</A> Recently, an elegant intramolecular [2+2]-photocyclo-addition approach was described
for the preparation of constrained bicyclic β-amino acid derivatives:
Basler B.
Schuster O.
Bach T.
J. Org. Chem.
2005,
70:
9798
<A NAME="RG08306ST-10">10</A>
Aitken DJ.
Gauzy C.
Pereira E.
Tetrahedron Lett.
2002,
43:
6177
Ethylene is a convenient partner for intermolecular [2+2] photocycloadditions with
enone-type reagents; for illustrative recent examples, see:
<A NAME="RG08306ST-11A">11a</A>
Gu X.
Xian M.
Roy-Faure S.
Bolte J.
Aitken DJ.
Gefflaut T.
Tetrahedron Lett.
2006,
47:
193
<A NAME="RG08306ST-11B">11b</A>
Furutani A.
Katayama K.
Uesima Y.
Ogura M.
Tobe Y.
Kurosawa H.
Tsutsumi K.
Morimoto T.
Kakiuchi K.
Chirality
2006,
18:
217
<A NAME="RG08306ST-11C">11c</A>
Gauzy C.
Pereira E.
Faure S.
Aitken DJ.
Tetrahedron Lett.
2004,
45:
7095
<A NAME="RG08306ST-11D">11d</A>
Piers E.
Orellana A.
Synthesis
2001,
2138
<A NAME="RG08306ST-11E">11e</A>
de March P.
Figueredo M.
Font J.
Raya J.
Org. Lett.
2000,
2:
163
<A NAME="RG08306ST-11F">11f</A>
Tsujishima H.
Nakatani K.
Shimamoto K.
Shigeri Y.
Yumoto N.
Ohfune Y.
Tetrahedron Lett.
1998,
39:
1193
<A NAME="RG08306ST-12A">12a</A>
Wagner PJ.
Bucheck DJ.
J. Am. Chem. Soc.
1970,
92:
181
<A NAME="RG08306ST-12B">12b</A>
Khattak MN.
Wang SY.
Tetrahedron
1972,
28:
945
<A NAME="RG08306ST-12C">12c</A>
Birnbaum GI.
Dunston JM.
Szabo AG.
Tetrahedron Lett.
1971,
12:
947
<A NAME="RG08306ST-12D">12d</A>
Shim SC.
Lee SH.
Photochem. Photobiol.
1979,
29:
1035
<A NAME="RG08306ST-13A">13a</A>
Wexler AJ.
Balchunis RJ.
Swenton JS.
J. Org. Chem.
1984,
49:
2733
<A NAME="RG08306ST-13B">13b</A>
Wexler AJ.
Hyatt JA.
Raynolds PW.
Cottrell C.
Swenton JS.
J. Am. Chem. Soc.
1978,
100:
512
<A NAME="RG08306ST-13C">13c</A>
Wexler AJ.
Swenton JS.
J. Am. Chem. Soc.
1976,
98:
1602
<A NAME="RG08306ST-14A">14a</A>
Li SS.
Sun XL.
Ogura H.
Konda Y.
Sasaki T.
Toda Y.
Takayanagi H.
Harigaya Y.
Chem. Pharm. Bull.
1995,
43:
144
<A NAME="RG08306ST-14B">14b</A>
Ishikawa I.
Itoh T.
Takayanagi H.
Oshima J.-i.
Kawahara N.
Mizuno Y.
Ogura H.
Chem. Pharm. Bull.
1991,
39:
1922
<A NAME="RG08306ST-15">15</A>
Maleski R.
Morrison H.
Mol. Photochem.
1972,
4:
507
<A NAME="RG08306ST-16">16</A>
Aoyama H.
Hatori H.
Tetrahedron
1990,
46:
3781
<A NAME="RG08306ST-17">17</A>
Compound 1c was obtained from 5-iodouracil by Suzuki reaction with phenylboronic acid.
<A NAME="RG08306ST-18">18</A>
Fang W.-P.
Cheng Y.-T.
Cheng Y.-R.
Cherng Y.-J.
Tetrahedron
2005,
61:
3107
<A NAME="RG08306ST-19">19</A>
Harnden MR.
Hurst DT.
Aust. J. Chem.
1990,
43:
47
<A NAME="RG08306ST-20">20</A>
Goto S.
Yamanaka A.
Kagara K.
Yazawa H.
Chem. Express
1988,
3:
211
<A NAME="RG08306ST-21">21</A>
Compound 1r was obtained by esterification of orotic acid in excess n-hexanol (as solvent) in the presence of anhydrous HCl.
<A NAME="RG08306ST-22">22</A>
Kunieda T.
Witkop B.
J. Am. Chem. Soc.
1971,
93:
3493
<A NAME="RG08306ST-23A">23a</A>
Ingold CK.
Sako S.
Thorpe JF.
J. Chem. Soc. Trans.
1922,
121:
1177
<A NAME="RG08306ST-23B">23b</A>
Garcia MJ.
Azerad R.
Tetrahedron: Asymmetry
1997,
8:
85
<A NAME="RG08306ST-24">24</A>
Rachina V.
Blagoeva I.
Synthesis
1982,
967
Both δ-keto acids were identified by comparison of 1H NMR and 13C NMR data with the literature. See:
<A NAME="RG08306ST-25A">25a</A> For 5-oxo-hexanoic acid (6m):
Griesbaum K.
Miclaus V.
Jung IC.
Quinkert R.-O.
Eur. J. Org. Chem.
1998,
627
<A NAME="RG08306ST-25B">25b</A> For 5-oxo-5-phenylpentanoic acid (6n):
Hon Y.-S.
Lin S.-W.
Lu L.
Chen Y.-J.
Tetrahedron
1995,
51:
5019
<A NAME="RG08306ST-26">26</A>
Aitken DJ.
Gauzy C.
Pereira E.
Tetrahedron Lett.
2004,
45:
2359
<A NAME="RG08306ST-27">27</A>
Representative Procedure for Photocycloaddition.
Compound 1j (0.250 g, 1.76 mmol) was introduced into a cylindrical water-cooled reactor containing
a 1:1 mixture of acetone-H2O (160 mL), which was vented under a fume hood. The mixture was stirred at r.t. and
degassed with argon for 30 min, then sat. with ethylene for 30 min. Then, whilst ethylene
bubbling continued, the mixture was irradiated with a 400 W medium-pressure mercury
lamp fitted with a Pyrex filter for 4 h. The solution was evaporated and the solid
residue was washed with cyclohexane then acetone. The cyclobutane adduct 2j was obtained as a white solid in 86% yield (0.257 g, 1.51 mmol). Mp 146-148 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.78-1.88 (m, 3 H), 2.06-2.13 (m, 1 H), 3.43 (dd, J = 10.8, 5.3 Hz, 1 H), 3.60 (dd, J = 10.8, 6.0 Hz, 1 H), 3.79 (td, J = 7.1, 4.2 Hz, 1 H), 5.08 (br t, J = 5.4 Hz, 1 H), 7.69 (br s, 1 H), 10.03 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
6): δ = 22.8, 27.5, 46.9, 48.8, 63.9, 152.4, 174.7 ppm. MS (ES+): m/z = 193 [MNa]+. HRMS (ES+): m/z calcd for C7H10N2O3Na: 193.0589; found: 193.0597.
Representative Procedure for Heterocyclic Ring-Opening.
Compound 2j (0.245 g, 1.44 mmol) was dissolved in 0.5 M NaOH solution (17.6 mL) and stirred overnight
at r.t. Cation exchange resin (Bio-Rad AG 50W-X8, H+, 20-50 mesh) was then added until pH was about 4. Filtration and then evaporation
of H2O left the desired compound 3j as a white paste in 87% yield (0.236 g, 1.25 mmol). 1H NMR (400 MHz, DMSO-d
6): δ = 1.62-1.74 (m, 1 H), 1.85-1.98 (m, 2 H), 2.04-2.15 (m, 1 H), 3.49 (d, J = 10.8 Hz, 1 H), 3.61 (d, J = 10.8 Hz, 1 H), 4.13 (q, J = 8.9 Hz, 1 H), 4.80 (br s, 1 H), 5.56 (s, 2 H), 6.16 (d, J = 8.9 Hz, 1 H), 12.25 (br s, 1 H) ppm. 13C NMR (100 MHz, DMSO-d
6): δ = 20.5, 25.6, 47.5, 57.6, 64.6, 157.8, 174.7 ppm. MS (ES+): m/z = 189 [MH]+, 211 [MNa]+. HRMS (ES+): m/z calcd for C7H12N2O4Na: 211.0695; found: 211.0691.
Representative Procedure for Diazotization.
Compound 3j (0.180 g, 0.96 mmol) was dissolved in 3.5 M HCl solution (22 mL). Then, 1 equiv of
NaNO2 (0.066 g; 0.96 mmol) was added and the mixture was stirred overnight at r.t. The
solution was deposited on a cation-exchange column (Dowex 5 × 8 W, H+, 50-100 mesh). The column was washed with H2O until the eluent was neutral, then the amino acid was eluted with 1 M NH4OH. Pure product 4j was recovered after evaporation of appropriate fractions as a white solid in 70%
yield (0.097 g, 0.67 mmol). Mp 91-94 °C. 1H NMR (400 MHz, D2O): δ = 1.77-1.89 (m, 1 H), 1.92-2.18 (m, 2 H), 2.13-2.25 (m, 1 H), 3.55 (d, J = 11.4 Hz, 1 H), 3.72 (d, J = 11.4 Hz, 1 H), 3.68-3.72 (m, 1 H) ppm. 13C NMR (100 MHz, D2O): δ = 22.5, 23.3, 47.9, 52.7, 65.9, 180.7 ppm. MS (ES+): m/z = 146 [MH]+, 168 [MNa]+. HRMS (ES+): m/z calcd for C6H12NO3: 146.0817; found: 146.0822.