RSS-Feed abonnieren
DOI: 10.1055/s-2006-941598
Lactones, Part 28: [1] A New Approach for the Synthesis of α-Methylene Lactones from Alkenes
Publikationsverlauf
Publikationsdatum:
12. Juni 2006 (online)

Abstract
A facile two-step procedure for synthesis of α-methylene lactones from alkenes and cycloalkenes is presented. Reactions carried out on some monoterpene alkenes afforded corresponding lactones in enantiomerically pure forms.
Key words
α-methylene lactone - CAN - Meldrum’s acid
- 1
Gadkowski W.Grabarczyk M.Wińska K.Biaońska A.Ciunik Z.Wawrzeńczyk C. J. Mol. Catal. B: Enzym. 2006, 39: 31 - 2
Lee KH.Huang BR. Eur. J. Med. Chem. 2002, 37: 333 - 3
Kupchan SM.Fessler DC.Eakin MA.Giacobbe TJ. Science 1970, 168: 376 - 4
Neerman MF. Int. J. Aromather. 2003, 13: 114 - 5
Ohno S.Tomita-Yokotani K.Kosemura S.Node M.Suzuki T.Amano M.Yasui K.Goto T.Yamamura S.Hasegawa K. Phytochemistry 2001, 56: 577 - 6
Picman AK. Biochem. System. Ecol. 1986, 14: 255 - 7
Zhang S.Won YK.Ong CN.Shen HM. Curr. Med. Chem.: Anti-Cancer Agents 2005, 5: 239 - 8
Grieco A. Synthesis 1975, 67 - 9
Hoffmann HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1985, 24: 94 - 10
Petragnani N.Ferraz HMC.Silva GVJ. Synthesis 1986, 157 - 11
Datta S.Saxena D. Pest. Manag. Sci. 2001, 57: 95 -
12a
Paruch E.Ciunik Z.Wawrzeńczyk C. Eur. J. Org. Chem. 1998, 2677 -
12b
Dams I.Biaońska A.Ciunik Z.Wawrzeńczyk C. J. Agric. Food Chem. 2004, 54: 1630 -
12c
Dams I.Biaońska A.Ciunik Z.Wawrzeńczyk C. Eur. J. Org. Chem. 2004, 12: 2662 -
12d
Paruch E.Ciunik Z.Wawrzeńczyk C. Liebigs Ann./Recl. 1997, 2341 - 13
Szumny A.Olejniczak T.Gabryś T.Halarewicz-Pacan A.Dancewicz K.Krystkowiak K.Wawrzeńczyk C. Arthropods. Chemical, Physiological and Environmental AspectsKonopińska D. University of Wrocaw; Poland: 2001. p.234 - 14
Murta MM.de Azevedo MBM.Greene AE. J. Org. Chem. 1993, 58: 7537 - 15
Solabannavar SB.Helavi VB.Desai UV.Mane RB. Tetrahedron Lett. 2002, 43: 4535 - 16
Campaigne E.Beckman JC. Synthesis 1978, 385 - 17
Dulcère JP.Mihoubi MN.Rodriguez J. J. Org. Chem. 1993, 58: 5709 - 18
Lamarque L.Mèou A.Brun P. Tetrahedron 1998, 54: 6497 - 19
Heiba EAI.Dessau RM. J. Org. Chem. 1974, 39: 3456
References and Notes
General Procedure.
CAN (20 mmol) was slowly added to a cooled (ice bath) and vigorously stirred solution of alkene (10 mmol) and Meldrum’s acid (or ethyl acetoacetate for compound 10) (10 mmol) in 50 mL MeCN. The reaction was complete when the orange color of the mixture turned to pale-yellow (usually after 1 h). Then the solvent was evaporated (below 50 °C, because of possible decarboxylation reaction). Then, H2O (100 mL) was added to the residue and the product was extracted with EtOAc (3 × 40 mL). Combined ethereal solutions were washed with brine. The purification of crude product via NaHCO3-HCl procedure significantly decreased the yield of this reaction. So in the next step crude α-car-boxylactone was stirred overnight with 3 mL of stock solution containing Et2NH (3 mL), 30% formaldehyde (6 mL), NaOAc (0.2 g) and AcOH (8 mL). The reaction mixture was acidified with 10% HCl (50 mL) and extracted with Et2O. Crude product was purified by column chromatography (eluent hexane-Et2O, starting from 20:1 and next 2:1).The physical and spectral data of compounds obtained are presented below.
Analytical Data for Compounds Obtained.
Compound 1a: n
D
20 1.4605. 1H NMR (300 MHz, CDCl3): δ = 6.19 (1 H, t, J = 2.8 Hz, =CH2), 5.57 (1 H, t, J = 2.4 Hz, =CH2), 2.72 (1 H, dt, J = 16.8, 2.8 Hz, CH2 in lactone), 2.68 (1 H, dt, J = 16.8, 2.4 Hz, CH2 in lactone), 1.71 and 1.65 [2 H, 2 d, J = 14.8 Hz ,(CH3)3CCH
2, AB system], 1.44 [3 H, s, (CH3)CO], 1.00 [9 H, s, (CH
3)3CCH2]. IR (film): 1778 (s), 1675 (m), 1290 (m), 1108 (m) cm-1. MS (EI): m/z (%) = 183 [M + H](7), 167 (1), 126 (4), 111 (100), 83 (18), 68 (5).
Compound 2a: mp 86 °C. 1H NMR (300 MHz, CDCl3): δ = 6.21 (1 H, t, J = 2.9 Hz, =CH2), 5.61 (1 H, t, J = 2.4 Hz, =CH2), 4.50 [1 H, tt, J = 7.6, 5.6 Hz, >CH(O)], 3.01 (1 H, ddt, J = 17.0, 7.6, 2.5 Hz, CH2 in lactone), 2.56 (1 H, ddt, J = 17.0, 5.9, 2.9 Hz, CH2 in lactone), 1.52-1.76 [2 H, m, CH3(CH2)10CH
2], 1.16-1.44 [20 H, m, CH3(CH
2)10CH2], 0.86 [3 H, t, J = 6.9 Hz, CH
3(CH2)10CH2]. IR (KBr): 1776 (s), 1676 (w), 1284 (m), 1124 (m), 944 (m) cm-1. MS (EI): m/z (%) = 267 (72) [M + H], 249 (13), 227 (13), 221 (25), 171 (23), 123 (34), 109 (52), 97 (100), 83 (31), 69 (69).
Compound 3a: n
D
20 1.4885. 1H NMR (300 MHz, CDCl3): δ = 6.22 (1 H, m, >C=CH2), 5.85 (1 H, dd, J = 17.2, 11.0 Hz, CH2=CH), 5.60 (1 H, m, =CH2), 5.22 (1 H, d, J = 17.2 Hz, CH
2=CH), 5.17 (1 H, d, J = 11.0 Hz, CH
2=CH), 5.06 [1 H, t, J = 5.6 Hz, (CH3)2C=CH], 2.82 (2 H, s, CH2 in lactone), 2.06 (2 H, m, =CHCH
2CH2), 1.76 (2 H, t, J = 8.2 Hz, =CHCH2CH
2), 1.67 [3 H, s, =C(CH3)2], 1.59 [3 H, s, =C(CH3)2]. IR (film,): 1766 (s), 1665 (w), 1276 (m), 1072 (w), 934 (w) cm-1. MS (EI): m/z (%) = 207 [M + H] (59), 189 (54), 173 (8), 161 (100), 145 (35), 133 (18), 121 (80), 105 (29), 93 (48), 67 (4).
Compound 4a: n
D
20 1.4962. 1H NMR (300 MHz, CDCl3): δ = 6.20 (1 H, d, J = 3.0 Hz, =CH2), 5.44 (1 H, d, J = 2.7 Hz, =CH2), 2.73 (1 H, m, >CHCH2), 1.71-1.25 [m, 8 H, (CH2)4 in cyclohexyl], 1.46 (3 H, s, CH3). IR (film): 1776 (s), 1676 (m), 1168 (m), 936 (m) cm-1. MS (EI): m/z = 167 (100) [M + H], 151 (14), 138 (10), 123 (61), 108 (9), 95 (18), 79 (8), 67 (10).
Compound 5a: n
D
20 1.5085. 1H NMR (600 MHz, CDCl3): δ = 6.20 (1 H, t, J = 2.8 Hz, =CH2), 5.58 (1 H, m, =CH2), 5.35 (1 H, m, >C=CH), 2.87 (dt, J = 17.1, 2.8 Hz, CH2 in lactone, diastereomer A), 2.86 (dt, J = 17.0, 3.1 Hz, CH2 in lactone, diastereomer B), 2.57 (1 H, dt, J = 17.0, 2.8 Hz, CH2 in lactone, diastereomer B), 2.56 (1 H, dt, J = 17.1, 2.4 Hz, CH2 in lactone, diastereomer A), 1.70-2.12 (7 H, m, CH2 and >CH in cyclohexyl), 1.61 [3 H, s, =C(CH3)], 1.35 and 1.34 [3 H, 2 s, >C(O)CH3 for both diastereomers]. IR (film): 1768 (s), 1668 (w), 1296 (s), 1060 (m) cm-1. MS (EI): m/z (%) = 207 (40) [M + H], 189 (9), 161 (15), 121 (100), 111 (37), 93 (27), 93 (27), 83 (19).
Compound 6a: [α]D
20 -46 (c 1.85 CHCl3); n
D
20 1.5321.
1H NMR (300 MHz, CDCl3): δ = 6.25 (1 H, d, J = 2.7 Hz, =CH2), 5.54 (1 H, d, J = 2.3 Hz, =CH2), 2.69 (1 H, m, CH< in lactone), 2.07 (1 H, dd, J = 14.6, 6.8 Hz, >CHCH
2), 1.88 (1 H, dd, J = 14.6, 5.1 Hz, >CHCH
2), 1.30 [3 H, s, (CH3)CO<], 1.10 (1 H, m, >CHCH
2CH<), 0.93 and 0.94 [6 H, two s, (CH3)2C<], 0.81 (1 H, m, >CHCH
2CH<), 0.44-0.56 (2 H, m, cyclopropyl). IR (film): 1768 (s), 1668 (w), 1296 (s), 1060 (m) cm-1. MS (EI): m/z (%) = 206 (53) [M+], 191 (23), 177 (13), 163 (53), 145 (25), 121 (22), 110 (98), 96 (73), 82 (100), 67 (30).
Compound 7a: mp 73-74 °C; 1H NMR (600 MHz, CDCl3): δ = 6.13 (1 H, t, J = 2.8 Hz, =CH2), 5.57 (1 H, t, J = 2.7 Hz, =CH2), 2.91 (1 H, dt, J = 17.0, 2.7 Hz, CH2 in lactone), 2.80 (1 H, dt, J = 17.0, 2.8 Hz, CH2 in lactone), 2.15 (1 H, dd, J = 6.4, 1.1 Hz, H-1), 2.10 (1 H, dd, J = 10.4, 1.8 Hz, CH2-7), 1.85 (1 H, d, J = 1.8 Hz, H-4), 1.58 (1 H, ddd, J = 12.4, 10.1, 3.2 Hz, CH2-6), 1.52 (1 H, ddd J = 13.2, 6.5, 3.2 Hz, CH2-5), 1.33 (1 H, ddd, J = 12.4, 6.5, 1.3 Hz, CH2-6), 1.25 (1 H, ddd, J = 13.2, 10.1, 1.3 Hz CH2-5), 1.21 (1 H, d, J = 10.4 Hz, CH2-7), 0.99 [3 H, s, C(CH3)2], 0.95 [3 H, s, C(CH3)2]. 13C NMR (CDCl3): 169.9, 136.5, 120.5, 93.7, 49.2, 49.1, 44.0, 34.8, 32.1, 25.7, 24.4, 24.1, 22.2. The NMR assignments were aided by 13C DEPT, 1H-1H and 13C-1H COSY spectroscopy. IR (KBr): 1759 (s), 1667 (w), 1120 (w), 975 (w) cm-1. MS (EI): m/z (%): 207 (40) [M + H], 191 (13), 133 (24), 138 (72), 123 (100), 121 (67), 108 (56), 95 (64), 79 (45), 67 (94).
Compound 8a: [α]D
20 +35 (c 2.01 CHCl3); mp 73-75 °C. 1H NMR (300 MHz, CDCl3): δ = 6.25 (1 H, d, J = 2.9 Hz, =CH2), 5.61 (1 H, d, J = 2.5 Hz, =CH2), 2.95 (1 H, dq, J = 10.8, 2.8 Hz, H-6), 2.54 (1 H, ddt, J = 13.5, 10.8, 2.2 Hz, CH2-7), 2.22 (1 H, ddd, J = 12.0, 6.0, 2.2 Hz H-8), 2.21 (1 H, d, J = 5.4 Hz, H-1), 1.93 (1 H, dddd, J = 11.0, 6.0, 5.4, 2.2 Hz, CH2-10), 1.76 (1 H, dt, J = 13.5, 3.3 Hz, CH2-7), 1.47 (3 H, s, CH3, C-2), 1.28 [3 H, s, (CH3)2C<], 1.02 (1 H, dd, J = 12.0, 11.0 Hz, CH2-10), 0.90 [3 H, s, (CH3)2C<]. IR (KBr): 1758 (s), 1655 (m), 1288 (m), 1066 (m), 1016 (m) cm-1. MS (EI): m/z (%) = 207 (100) [M + H], 191 (16), 136 (41), 151 (21), 135 (22), 121 (26), 107 (25), 91 (34), 79 (44).
Compound 9a: [α]D
20 -30 (c 1.29 CHCl3).
Compound 10: yield 70%; n
D
20 1.4673. 1H NMR (300 MHz, CDCl3): δ = 4.14 (2 H, q, J = 7.1 Hz, CH3CH2O-), 2.80 (1 H, dq, J = 11.3 Hz, J
5 = 1.5 Hz, CH2), 2.57 (1 H, dq, J = 11.3, 1.5 Hz, CH2), 2.14 [3 H, t, J
5
= 1.5 Hz, C(O)CH3], 1.70 and 1.63 [2 H, two d, J = 14.6 Hz (CH3)3CCH2, AB system], 1,37 [3 H, s, (CH3)CO], 1.26 (3 H, t, J = 7.1 Hz, CH3CH2O), 0.99 [9 H, s, (CH3)3CCH2]. 13C NMR (CDCl3): 166.7, 166.6, 101.0, 89.2, 59.3, 53.2, 43.5, 31.2, 28.2, 14.5. IR (film): 2960 (s), 1708 (s), 1660 (s), 1268 (m), 1224 (m), 1096 (m) cm-1. MS (EI): m/z (%) = 241 (11) [M + H], 222 (21), 207 (20), 198 (42), 166 (43), 141 (100), 111 (56), 95 (70), 67 (43).