Osteosynthesis and Trauma Care 2006; 14(3): 181-187
DOI: 10.1055/s-2006-942235
Original Article

© Georg Thieme Verlag Stuttgart · New York

Molecular Biology of Chondrocytes Designed for Transplantation

W. Schlegel1 , C. Albrecht1 , A. Berger1 , S. Nürnberger1 , V. Vécsei1 , S. Marlovits1
  • 1Department for Traumatology, Medical University Vienna, Vienna, Austria
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. November 2006 (online)

Abstract

Hyaline cartilage is a highly specialised tissue, lacking vascularisation and innervation. Articular cartilage contains a small number of cells compared to the vast amount of extracellular matrix. The smooth surface of articular cartilage is important for frictionless articulation. Degenerative or polytraumatic processes and aging result in inflammation and/or destruction of the intact cartilage layer and have been an unsolved problem so far. Matrix-associated autologous chondrocyte transplantation (MACT) has been introduced as a new option for the biological treatment of patients with focal cartilage defects. To ensure a high quality of the transplants, a consideration of the molecular biological demands on the constructs is indispensable, as cells alter shape and expression patterns during their cultivation period. Real-time PCR is the most powerful tool for this kind of investigation. Additionally, this method allows comparative insights into joint development and regenerative processes.

References

  • 1 Archer C W, Cottrill C P, Rooney P. Cellular aspects of cartilage differentiation and morphogenesis.  Prog Clin Biol Res. 1984;  151 409-426
  • 2 Archer C W, Francis-West P. The chondrocyte.  Int J Biochem Cell Biol. 2003;  35 401-404
  • 3 Archer C W, Morrison E H, Bayliss M T, Ferguson M W, The development of articular cartilage: I I. The spatial and temporal patterns of glycosaminoglycans and small leucine-rich proteoglycans.  J Anat. 1996;  189 (Pt 1) 23-35
  • 4 Archer C W, Morrison H, Pitsillides A A. Cellular aspects of the development of diarthrodial joints and articular cartilage.  J Anat. 1994;  184 (Pt 3) 447-456
  • 5 Archer C W, Rooney P, Cottrill C P. Cartilage morphogenesis in vitro.  J Embryol Exp Morphol. 1985;  90 33-48
  • 6 Blaschke U K, Eikenberry E F, Hulmes D J, Galla H J, Bruckner P. Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils.  J Biol Chem. 2000;  275 10370-10378
  • 7 Bonnemann C G, Cox G F, Shapiro F, Wu J J, Feener C A, Thompson T G, Anthony D C, Eyre D R, Darras B T, Kunkel L M. A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy.  Proc Natl Acad Sci USA. 2000;  97 1212-1217
  • 8 Brodkin K R, Garcia A J, Levenston M E. Chondrocyte phenotypes on different extracellular matrix monolayers.  Biomaterials. 2004;  25 5929-5938
  • 9 Bruckner P, van der Rest M. Structure and function of cartilage collagens.  Microsc Res Tech. 1994;  28 378-384
  • 10 Buckwalter J A, Mankin H J. Articular cartilage repair and transplantation.  Arthritis Rheum. 1998;  41 1331-1342
  • 11 Buckwalter J A, Mankin H J. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.  Instr Course Lect. 1998;  47 487-504
  • 12 Buckwalter J A, Mow V C, Ratcliffe A. Restoration of injured or degenerated articular cartilage.  J Am Acad Orthop Surg. 1994;  2 192-201
  • 13 Buxton P, Edwards C, Archer C W, Francis-West P. Growth/differentiation factor-5 (GDF-5) and skeletal development.  J Bone Joint Surg [Am]. 2001;  83 (Suppl 1) S 23-S 30
  • 14 Chaipinyo K, Oakes B W, Van Damme M P. The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels.  J Orthop Res. 2004;  22 446-455
  • 15 Chang S C, Hoang B, Thomas J T, Vukicevic S, Luyten F P, Ryba N J, Kozak C A, Reddi A H, Moos Jr  M. Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development.  J Biol Chem. 1994;  269 28227-28234
  • 16 Cherubino P, Grassi F A, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report.  J Orthop Surg (Hong Kong). 2003;  11 10-15
  • 17 Coleman C M, Tuan R S. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells.  Mech Dev. 2003;  120 823-836
  • 18 Coleman C M, Tuan R S. Growth/differentiation factor 5 enhances chondrocyte maturation.  Dev Dyn. 2003;  228 208-216
  • 19 Craig F M, Bayliss M T, Bentley G, Archer C W. A role for hyaluronan in joint development.  J Anat. 1990;  171 17-23
  • 20 Dowthwaite G P, Bishop J C, Redman S N, Khan I M, Rooney P, Evans D J, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe M S, Archer C W. The surface of articular cartilage contains a progenitor cell population.  J Cell Sci. 2004;  117 889-897
  • 21 Edwards K, Logan J, Saunders N. Horizon Bioscience: Real-time PCR: an essential guide. Horizon Bioscience, Wymondham, Norfolk 2004
  • 22 Ferguson C, Alpern E, Miclau T, Helms J A. Does adult fracture repair recapitulate embryonic skeletal formation?.  Mech Dev. 1999;  87 57-66
  • 23 Francis-West P H, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten F P, Archer C W. Mechanisms of GDF-5 action during skeletal development.  Development. 1999;  126 1305-1315
  • 24 Garciadiego-Cazares D, Rosales C, Katoh M, Chimal-Monroy J. Coordination of chondrocyte differentiation and joint formation by alpha5beta1 integrin in the developing appendicular skeleton.  Development. 2004;  131 4735-4742
  • 25 Hartmann C, Tabin C J. Dual roles of Wnt signaling during chondrogenesis in the chicken limb.  Development. 2000;  127 3141-3159
  • 26 Hartmann C, Tabin C J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton.  Cell. 2001;  104 341-351
  • 27 Hatakeyama Y, Tuan R S, Shum L. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis.  J Cell Biochem. 2004;  91 1204-1217
  • 28 Hayes A J, Dowthwaite G P, Webster S V, Archer C W. The distribution of Notch receptors and their ligands during articular cartilage development.  J Anat. 2003;  202 495-502
  • 29 Hua Q, Knudson C B, Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis.  J Cell Sci. 1993;  106 (Pt 1) 365-375
  • 30 Huckle J, Dootson G, Medcalf N, McTaggart S, Wright E, Carter A, Schreiber R, Kirby B, Dunkelman N, Stevenson S, Riley S, Davisson T, Ratcliffe A. Differentiated chondrocytes for cartilage tissue engineering.  Novartis Found Symp. 2003;  249 103-112 ; discussion 112-117, 170-174, 239-241 
  • 31 Hughes L C, Archer C W, Ap Gwynn I. The ultrastructure of mouse articular cartilage: Collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review.  Eur Cell Mater. 2005;  9 68-84
  • 32 Kerr J B. Atlas of functional histology. Mosby, London, St. Louis 1999
  • 33 Knudson W, Aguiar D J, Hua Q, Knudson C B. CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis.  Exp Cell Res. 1996;  228 216-228
  • 34 Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti G L, Stefani G, Zanasi S. Articular cartilage engineering with Hyalograft® C: 3-Year clinical results.  Clin Orthop Relat Res. 2005;  435 96-105
  • 35 Marcacci M, Kon E, Zaffagnini S, Iacono F, Neri M P, Vascellari A, Visani A, Russo A. Multiple osteochondral arthroscopic grafting (mosaic plasty) for cartilage defects of the knee: prospective study results at 2-year follow-up.  Arthroscopy. 2005;  21 462-470
  • 36 Marcacci M, Kon E, Zaffagnini S, Vascellari A, Neri M P, Iacono F. New cell-based technologies in bone and cartilage tissue engineering. II. Cartilage regeneration.  Chir Organi Mov. 2003;  88 42-47
  • 37 Marcacci M, Kon E, Zaffagnini S, Visani A. Use of autologous grafts for reconstruction of osteochondral defects of the knee.  Orthopedics. 1999;  22 595-600
  • 38 Marlovits S, Hombauer M, Tamandl D, Vécsei V, Schlegel W. Quantitative analysis of gene expression in human articular chondrocytes in monolayer culture.  Int J Mol Med. 2004;  13 281-287
  • 39 Marlovits S, Hombauer M, Truppe M, Vécsei V, Schlegel W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes.  J Bone Joint Surg [Br]. 2004;  86 286-295
  • 40 Marlovits S, Kutscha-Lissberg F, Aldrian S, Resinger C, Singer P, Zeller P, Vécsei V. Autologous chondrocyte transplantation for the treatment of articular cartilage defects in the knee joint. Techniques and results.  Radiologe. 2004;  44 763-772
  • 41 Marlovits S, Tichy B, Truppe M, Gruber D, Schlegel W. Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor.  Int J Artif Organs. 2003;  26 319-330
  • 42 Miller E J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains.  Biochemistry. 1971;  10 1652-1659
  • 43 Morrison E H, Ferguson M W, Bayliss M T, Archer C W. The development of articular cartilage: I. The spatial and temporal patterns of collagen types.  J Anat. 1966;  189 (Pt 1) 9-22
  • 44 Mwale F, Demers C N, Petit A, Roughley P, Poole A R, Steffen T, Aebi M, Antoniou J. A synthetic peptide of link protein stimulates the biosynthesis of collagens II, IX and proteoglycan by cells of the intervertebral disc.  J Cell Biochem. 2003;  88 1202-1213
  • 45 Mwale F, Tchetina E, Wu C W, Poole A R. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan.  J Bone Miner Res. 2002;  17 275-283
  • 46 Ohno S, Im H J, Knudson C B, Knudson W. Hyaluronan oligosaccharide-induced activation of transcription factors in bovine articular chondrocytes.  Arthritis Rheum. 2005;  52 800-809
  • 47 Pavesio A, Abatangelo G, Borrione A, Brocchetta D, Hollander A P, Kon E, Torasso F, Zanasi S, Marcacci M. Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings.  Novartis Found Symp. 2003;  249 203-217 ; discussion 229-233, 234-238, 239-241 
  • 48 Redini F, Min W, Demoor-Fossard M, Boittin M, Pujol J P. Differential expression of membrane-anchored proteoglycans in rabbit articular chondrocytes cultured in monolayers and in alginate beads. Effect of transforming growth factor-beta 1.  Biochim Biophys Acta. 1997;  355 20-32
  • 49 Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1989
  • 50 Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture.  Osteoarthritis Cartilage. 2002;  10 62-70
  • 51 Schumacher B L, Block J A, Schmid T M, Aydelotte M B, Kuettner K E. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage.  Arch Biochem Biophys. 1994;  311 144-152
  • 52 Settle Jr S H, Rountree R B, Sinha A, Thacker A, Higgins K, Kingsley D M. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes.  Dev Biol. 2003;  254 116-130
  • 53 Solchaga L A, Welter J F, Lennon D P, Caplan A I. Generation of pluripotent stem cells and their differentiation to the chondrocytic phenotype.  Methods Mol Med. 2004;  100 53-68
  • 54 Solchaga L A, Yoo J U, Lundberg M, Dennis J E, Huibregtse B A, Goldberg V M, Caplan A I. Hyaluronan-based polymers in the treatment of osteochondral defects.  J Orthop Res. 2000;  18 773-780
  • 55 Stokes D G, Liu G, Coimbra I B, Piera-Velazquez S, Crowl R M, Jimenez S A. Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis.  Arthritis Rheum. 2002;  46 404-419
  • 56 Takahara M, Harada M, Guan D, Otsuji M, Naruse T, Takagi M, Ogino T. Developmental failure of phalanges in the absence of growth/differentiation factor 5.  Bone. 2004;  35 1069-1076
  • 57 Tallheden T, Karlsson C, Brunner A, Van Der Lee J, Hagg R, Tommasini R, Lindahl A. Gene expression during redifferentiation of human articular chondrocytes.  Osteoarthritis Cartilage. 2004;  12 525-535
  • 58 Tew S, Redman S, Kwan A, Walker E, Khan I, Dowthwaite G, Thomson B, Archer C W. Differences in repair responses between immature and mature cartilage.  Clin Orthop Relat Res. 2001;  391 Suppl S 142-S 152
  • 59 von der Mark K, Conrad G. Cartilage cell differentiation: review.  Clin Orthop Relat Res. 1979;  135 185-205
  • 60 Weigel P H, Hascall V C, Tammi M. Hyaluronan synthases.  J Biol Chem. 1997;  272 13997-14000
  • 61 Wolfman N M, Hattersley G, Cox K, Celeste A J, Nelson R, Yamaji N, Dube J L, DiBlasio-Smith E, Nove J, Song J J, Wozney J M, Rosen V. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family.  J Clin Invest. 1997;  100 321-330
  • 62 Zhidkova N I, Justice S K, Mayne R. Alternative mRNA processing occurs in the variable region of the pro-alpha 1(XI) and pro-alpha 2(XI) collagen chains.  J Biol Chem. 1995;  270 9486-9493

Dr. W. Schlegel

Medical University Vienna · Trauma Research Laboratories

Waehringer Guertel 18-20

1090 Vienna

Austria

eMail: werner.schlegel@meduniwien.ac.at