References and Notes
1a
Eder U.
Sauer G.
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1971,
10:
496
1b
Hajos ZG.
Parrish DR.
J. Org. Chem.
1974,
39:
1615
2
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim Germany:
2005.
3 For recent review, see: List B.
Acc. Chem. Res.
2004,
37:
548
4a For a review, see: List B.
Tetrahedron
2002,
58:
5573
Some recent examples:
4b
Tokuda O.
Kano T.
Gao W.-G.
Ikemoto T.
Maruoka K.
Org. Lett.
2005,
7:
5103
4c
Suri JT.
Steiner DD.
Barbas CF.
Org. Lett.
2005,
7:
3885
4d
Pan Q.
Zou B.
Wang Y.
Ma D.
Org. Lett.
2004,
6:
1009
4e
Storer RI.
MacMillan DWC.
Tetrahedron
2004,
60:
7705
4f
Hayashi Y.
Yamaguchi J.
Sumiya T.
Hibino K.
Shoji M.
J. Org. Chem.
2004,
69:
5966
4g
Enders D.
Grondal C.
Angew. Chem. Int. Ed.
2005,
44:
1210
5a
Shah N.
Scanlan TS.
Bioorg. Med. Chem. Lett.
2004,
14:
5199
5b
Kende AS.
Deng W.-P.
Zhong M.
Guo X.-C.
Org. Lett.
2003,
5:
1785
5c
Aav R.
Kanger T.
Pehk T.
Lopp M.
Synlett
2000,
529
5d
Di Filippo M.
Izzo I.
Vece A.
De Riccardis F.
Sodano G.
Tetrahedron Lett.
2001,
42:
1155
6a
Buchschacher P.
Fürst A.
Gutzwiller J.
Org. Synth., Coll. Vol. VII
Wiley;
New York:
1990.
p.368
6b
Hajos ZG.
Parrish DR.
Organic Synthesis, Coll. Vol. VII
Wiley;
New York:
1990.
p.363
7a
Bui T.
Barbas CF.
Tetrahedron Lett.
2000,
41:
6951
7b
Cheong PA.-Y.
Houk KN.
Warrier JS.
Hanessian S.
Adv. Synth. Catal.
2004,
346:
1111
8
Shigehisa H.
Mizutani T.
Tosaki S.-y.
Ohshima T.
Shibasaki M.
Tetrahedron
2005,
61:
5057
9
Zhong G.
Hoffmann T.
Lerner RA.
Danishefsky S.
Barbas CF.
J. Am. Chem. Soc.
1997,
119:
8131
10
Davies SG.
Sheppard RL.
Smith AD.
Thomson JE.
Chem. Commun.
2005,
3802
11a
Allemann C.
Gordillo R.
Clemente FR.
Cheong PA.-Y.
Houk KN.
Acc. Chem. Res.
2004,
37:
558
11b
Clemente FR.
Houk KN.
Angew. Chem. Int. Ed.
2004,
43:
5766
12
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
13
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
14a
Kanger T.
Kriis K.
Pehk T.
Müürisepp A.-M.
Lopp M.
Tetrahedron: Asymmetry
2002,
13:
857
14b
Kanger T.
Laars M.
Kriis K.
Kailas T.
Müürisepp A.-M.
Pehk T.
Lopp M.
Synthesis
2006,
1853
15a
Kriis K.
Kanger T.
Müürisepp A.-M.
Lopp M.
Tetrahedron: Asymmetry
2003,
14:
2271
15b
Kriis K.
Kanger T.
Lopp M.
Tetrahedron: Asymmetry
2004,
15:
2687
16a
Itagaki N.
Kimura M.
Sugahara T.
Iwabuchi Y.
Org. Lett.
2005,
7:
4185
16b
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
734
16c
Chimni SS.
Mahajan D.
Babu VVS.
Tetrahedron Lett.
2005,
46:
5617
16d
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
958
17
General Method for the Organocatalytic Aldol Condensation of Ketones 5 and 6.
Organocatalyst 3 or 4 (0.05 mmol) was added to a stirred solution of triketone 5 or 6 (1.0 mmol) in anhyd MeCN (2.0 mL). The reaction mixture was refluxed for an appropriate time. The reaction was monitored by capillary GC. After completion of the reaction, toluene (5 mL) was added, the mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel (30% EtOAc in PE). The obtained ketones 1 and 2 are known compounds and our spectroscopic and chromatographic data are in agreement with published data. The ee was determined by HPLC (Daicel Chiralcel OD-H (250 × 4.6 mm), detection at λ = 254 nm, eluent: 4% of i-PrOH in hexane, flow rate 0.8 mL/min); t
R (S)-1 = 19.4 min, t
R (R)-1 = 21.6 min, t
R (S)-2 = 25.6 min, t
R (R)-2 = 28.3 min.
18 Converting stereogenic N atoms via chelation is described by: Kizirian J.-C.
Caille J.-C.
Alexakis A.
Tetrahedron Lett.
2003,
44:
8893
19
(4a
S
*,8a
S
*)-6,8a-Dimethylhexahydro-2
H
-chromene-2,5 (3
H
)-dione (7).
A 2:1 mixture of two isomers with differing orientations of the 6-methyl group. Main isomer with 6R* configuration: 1H NMR (500 MHz, CDCl3): δ = 2.73 (m, 1 H, H-3), 2.54 (m, 1 H, H-4a), 2.49 (m, 1 H, H-3), 2.43 (m, 1 H, H-6), 2.42 (m, 1 H, H-4), 2.15 (m, 1 H, H-8), 1.97 (m, 1 H, H-8), 1.94 (m, 1 H, H-7), 1.93 (m, 1 H, H-4), 1.71 (m, 1 H, H-7), 1.54 (s, 3 H, 8a-Me), 1.03 (d, J = 6.5 Hz, 3 H, 6-Me). 13C NMR (125 MHz, CDCl3): δ = 209.33 (C-5), 171.24 (C-2), 86.19 (C-8a), 49.52 (C-4a), 44.32 (C-6), 37.48 (C-8), 29.83 (C-7), 28.39 (C-8a-Me), 25.54 (C-3), 15.69 (C-4), 14.19 (C-6 Me).
Minor isomer with 6S* configuration: 1H NMR (500 MHz, CDCl3,): δ = 2.68 (m, 1 H, H-3), 2.66 (m, 1 H, H-4a), 2.57 (m, 1 H, H-6), 2.45 (m, 1 H, H-3), 2.27 (m, 1 H, H-4), 2.10 (m, 2 H, H-7), 2.08 (m, 2 H, H-8), 1.95 (m, 1 H, H-4), 1.44 (s, 3 H, 8a-Me), 1.13 (d, J = 6.5 Hz, 3 H, 6-Me). 13C NMR (125 MHz, CDCl3): δ = 211.33 (C-5), 169.97 (C-2), 85.27 (C-8a), 51.49 (C-4a), 41.53 (C-6), 33.14 (C-8), 27.90 (C-7), 27.81 (C-8a-Me), 27.56 (C-3), 19.53 (C-4), 15.23 (C-6 Me). MS (EI): m/z (%) = 196 (3) [M+], 181 (2), 168 (4), 112 (86), 84 (29), 43 (100).
20
Muskopf JW.
Coates RM.
J. Org. Chem.
1985,
50:
69
21
Mossé S.
Laars M.
Kriis K.
Kanger T.
Alexakis A.
Org. Lett.
2006,
8:
2559