References and Notes
-
1a
Eder U.
Sauer G.
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1971,
10:
496
-
1b
Hajos ZG.
Parrish DR.
J. Org. Chem.
1974,
39:
1615
- 2
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim Germany:
2005.
- 3 For recent review, see: List B.
Acc. Chem. Res.
2004,
37:
548
-
4a For a review, see: List B.
Tetrahedron
2002,
58:
5573
-
Some recent examples:
-
4b
Tokuda O.
Kano T.
Gao W.-G.
Ikemoto T.
Maruoka K.
Org. Lett.
2005,
7:
5103
-
4c
Suri JT.
Steiner DD.
Barbas CF.
Org. Lett.
2005,
7:
3885
-
4d
Pan Q.
Zou B.
Wang Y.
Ma D.
Org. Lett.
2004,
6:
1009
-
4e
Storer RI.
MacMillan DWC.
Tetrahedron
2004,
60:
7705
-
4f
Hayashi Y.
Yamaguchi J.
Sumiya T.
Hibino K.
Shoji M.
J. Org. Chem.
2004,
69:
5966
-
4g
Enders D.
Grondal C.
Angew. Chem. Int. Ed.
2005,
44:
1210
-
5a
Shah N.
Scanlan TS.
Bioorg. Med. Chem. Lett.
2004,
14:
5199
-
5b
Kende AS.
Deng W.-P.
Zhong M.
Guo X.-C.
Org. Lett.
2003,
5:
1785
-
5c
Aav R.
Kanger T.
Pehk T.
Lopp M.
Synlett
2000,
529
-
5d
Di Filippo M.
Izzo I.
Vece A.
De Riccardis F.
Sodano G.
Tetrahedron Lett.
2001,
42:
1155
-
6a
Buchschacher P.
Fürst A.
Gutzwiller J.
Org. Synth., Coll. Vol. VII
Wiley;
New York:
1990.
p.368
-
6b
Hajos ZG.
Parrish DR.
Organic Synthesis, Coll. Vol. VII
Wiley;
New York:
1990.
p.363
-
7a
Bui T.
Barbas CF.
Tetrahedron Lett.
2000,
41:
6951
-
7b
Cheong PA.-Y.
Houk KN.
Warrier JS.
Hanessian S.
Adv. Synth. Catal.
2004,
346:
1111
- 8
Shigehisa H.
Mizutani T.
Tosaki S.-y.
Ohshima T.
Shibasaki M.
Tetrahedron
2005,
61:
5057
- 9
Zhong G.
Hoffmann T.
Lerner RA.
Danishefsky S.
Barbas CF.
J. Am. Chem. Soc.
1997,
119:
8131
- 10
Davies SG.
Sheppard RL.
Smith AD.
Thomson JE.
Chem. Commun.
2005,
3802
-
11a
Allemann C.
Gordillo R.
Clemente FR.
Cheong PA.-Y.
Houk KN.
Acc. Chem. Res.
2004,
37:
558
-
11b
Clemente FR.
Houk KN.
Angew. Chem. Int. Ed.
2004,
43:
5766
- 12
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
- 13
Saito S.
Yamamoto H.
Acc. Chem. Res.
2004,
37:
570
-
14a
Kanger T.
Kriis K.
Pehk T.
Müürisepp A.-M.
Lopp M.
Tetrahedron: Asymmetry
2002,
13:
857
-
14b
Kanger T.
Laars M.
Kriis K.
Kailas T.
Müürisepp A.-M.
Pehk T.
Lopp M.
Synthesis
2006,
1853
-
15a
Kriis K.
Kanger T.
Müürisepp A.-M.
Lopp M.
Tetrahedron: Asymmetry
2003,
14:
2271
-
15b
Kriis K.
Kanger T.
Lopp M.
Tetrahedron: Asymmetry
2004,
15:
2687
-
16a
Itagaki N.
Kimura M.
Sugahara T.
Iwabuchi Y.
Org. Lett.
2005,
7:
4185
-
16b
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
734
-
16c
Chimni SS.
Mahajan D.
Babu VVS.
Tetrahedron Lett.
2005,
46:
5617
-
16d
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
958
- 18 Converting stereogenic N atoms via chelation is described by: Kizirian J.-C.
Caille J.-C.
Alexakis A.
Tetrahedron Lett.
2003,
44:
8893
- 20
Muskopf JW.
Coates RM.
J. Org. Chem.
1985,
50:
69
- 21
Mossé S.
Laars M.
Kriis K.
Kanger T.
Alexakis A.
Org. Lett.
2006,
8:
2559
17
General Method for the Organocatalytic Aldol Condensation of Ketones 5 and 6.
Organocatalyst 3 or 4 (0.05 mmol) was added to a stirred solution of triketone 5 or 6 (1.0 mmol) in anhyd MeCN (2.0 mL). The reaction mixture was refluxed for an appropriate time. The reaction was monitored by capillary GC. After completion of the reaction, toluene (5 mL) was added, the mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel (30% EtOAc in PE). The obtained ketones 1 and 2 are known compounds and our spectroscopic and chromatographic data are in agreement with published data. The ee was determined by HPLC (Daicel Chiralcel OD-H (250 × 4.6 mm), detection at λ = 254 nm, eluent: 4% of i-PrOH in hexane, flow rate 0.8 mL/min); t
R (S)-1 = 19.4 min, t
R (R)-1 = 21.6 min, t
R (S)-2 = 25.6 min, t
R (R)-2 = 28.3 min.
19
(4a
S
*,8a
S
*)-6,8a-Dimethylhexahydro-2
H
-chromene-2,5 (3
H
)-dione (7).
A 2:1 mixture of two isomers with differing orientations of the 6-methyl group. Main isomer with 6R* configuration: 1H NMR (500 MHz, CDCl3): δ = 2.73 (m, 1 H, H-3), 2.54 (m, 1 H, H-4a), 2.49 (m, 1 H, H-3), 2.43 (m, 1 H, H-6), 2.42 (m, 1 H, H-4), 2.15 (m, 1 H, H-8), 1.97 (m, 1 H, H-8), 1.94 (m, 1 H, H-7), 1.93 (m, 1 H, H-4), 1.71 (m, 1 H, H-7), 1.54 (s, 3 H, 8a-Me), 1.03 (d, J = 6.5 Hz, 3 H, 6-Me). 13C NMR (125 MHz, CDCl3): δ = 209.33 (C-5), 171.24 (C-2), 86.19 (C-8a), 49.52 (C-4a), 44.32 (C-6), 37.48 (C-8), 29.83 (C-7), 28.39 (C-8a-Me), 25.54 (C-3), 15.69 (C-4), 14.19 (C-6 Me).
Minor isomer with 6S* configuration: 1H NMR (500 MHz, CDCl3,): δ = 2.68 (m, 1 H, H-3), 2.66 (m, 1 H, H-4a), 2.57 (m, 1 H, H-6), 2.45 (m, 1 H, H-3), 2.27 (m, 1 H, H-4), 2.10 (m, 2 H, H-7), 2.08 (m, 2 H, H-8), 1.95 (m, 1 H, H-4), 1.44 (s, 3 H, 8a-Me), 1.13 (d, J = 6.5 Hz, 3 H, 6-Me). 13C NMR (125 MHz, CDCl3): δ = 211.33 (C-5), 169.97 (C-2), 85.27 (C-8a), 51.49 (C-4a), 41.53 (C-6), 33.14 (C-8), 27.90 (C-7), 27.81 (C-8a-Me), 27.56 (C-3), 19.53 (C-4), 15.23 (C-6 Me). MS (EI): m/z (%) = 196 (3) [M+], 181 (2), 168 (4), 112 (86), 84 (29), 43 (100).