Subscribe to RSS
DOI: 10.1055/s-2006-947346
Ruthenium-Catalyzed Ring Expansion Reaction of 1-Acetylenylcyclobutanols with Methyl Vinyl Ketone
Publication History
Publication Date:
24 July 2006 (online)

Abstract
A novel type of ruthenium-catalyzed cascade ring expansion reaction is reported. A 1,2-rearrangement of acetylenylcyclobutanol followed by carbon-carbon bond formation with methyl vinyl ketone proceeds in one-pot process. This reaction enables to synthesize 2-alkylidenecyclopentanones in a stereoselective manner using appropriate ruthenium catalysts.
Key words
alkynes - ruthenium - ring expansion - domino reaction - stereoselective synthesis
- 1
Boontanonda P.Grigg R. J. Chem. Soc., Chem. Commun. 1977, 583 -
2a
Clark GR.Thiensathit S. Tetrahedron Lett. 1985, 26: 2503 -
2b
Demuth M.Pandey B.Said H.Viader J. Helv. Chim. Acta 1988, 71: 1932 -
2c
de Almeida Barbosa L.-C.Mann J. J. Chem. Soc., Perkin Trans. 1 1990, 177 -
2d
Kim S.Uh KH.Lee S.Park JH. Tetrahedron Lett. 1991, 32: 3395 -
2e
Nemoto H.Miyata J.Fukumoto K. Tetrahedron 1996, 52: 10363 -
2f
Nishimura T.Ohe K.Uemura S. J. Am. Chem. Soc. 1999, 121: 2645 - Having isopropenyl group:
-
3a
Nemoto H.Shiraki M.Fukumoto K. Synlett 1994, 599 -
3b
Nemoto H.Miyata J.Yoshida M.Raku N.Fukumoto K. J. Org. Chem. 1997, 62: 7850 - Having propargyl group:
-
4a
Yoshida M.Nemoto H.Ihara M. Tetrahedron Lett. 1999, 40: 8538 -
4b
Yoshida M.Komatsuzaki Y.Nemoto H.Ihara M. Org. Biomol. Chem. 2004, 3099 - Having acetylenyl group:
-
5a
Liebeskind LS.Mitchell D.Foster BS. J. Am. Chem. Soc. 1987, 109: 7908 -
5b
Mitchell D.Liebeskind LS. J. Am. Chem. Soc. 1990, 112: 291 -
5c
Larock RC.Reddy ChK. Org. Lett. 2000, 2: 3325 -
5d
Larock RC.Reddy ChK. J. Org. Chem. 2002, 67: 2027 - Having allenyl group:
-
6a
Nemoto H.Yoshida M.Fukumoto K. J. Org. Chem. 1997, 64: 6450 -
6b
Yoshida M.Sugimoto K.Ihara M. Tetrahedron Lett. 2000, 41: 5089 -
6c
Yoshida M.Sugimoto K.Ihara M. Tetrahedron 2002, 58: 7839 - 7 Having 1,3-butadienyl group:
Yoshida M.Sugimoto K.Ihara M. Org. Lett. 2004, 6: 1979 -
8a
Nemoto H.Nagamochi M.Fukumoto K. J. Chem. Soc., Perkin Trans. 1 1993, 2329 -
8b
Nemoto H.Nagamochi M.Ishibashi H.Fukumoto K. J. Org. Chem. 1994, 59: 74 -
8c
Nemoto H.Yoshida M.Fukumoto K.Ihara M. Tetrahedron Lett. 1999, 40: 907 -
8d
Nemoto H.Miyata J.Ihara M. Tetrahedron Lett. 1999, 40: 1933 -
8e
Nemoto H.Takahashi E.Ihara M. Org. Lett. 1999, 1: 517 -
8f
Yoshida M.Ismail MA.-H.Nemoto H.Ihara M. J. Chem. Soc., Perkin Trans. 1 2000, 2629 - 9
Yoshida M.Sugimoto K.Ihara M. Tetrahedron Lett. 2001, 42: 3877 - 10 Ruthenium-catalyzed dimerization-ring expansion reaction has been previously reported by us. See:
Yoshida M.Sugimoto K.Ihara M. ARKIVOC 2003, (viii): 35 - 13
Walker LF.Bourghida A.Wills M. J. Chem. Soc., Perkin Trans. 1 2002, 965 - 14
Hartwig JF.Bhandari S.Rablen PR. J. Am. Chem. Soc. 1994, 116: 1839 -
15a
Gill TP.Mann KR. Organometallics 1982, 1: 485 -
15b
Trost BM.Oder CM. Organometallics 2002, 21: 2544 -
15c
Kündig EP.Monnier FR. Adv. Synth. Catal. 2004, 346: 901 - 17 CpRu(MeCN)3PF6 catalyzes three component coupling reaction via nucleophilic attack of halide to acetylene followed by insertion of vinylruthenium complex to MVK:
Trost BM.Pinkerton AB. J. Am. Chem. Soc. 2002, 124: 7376 - 18
Henderson WA.Streuli CA. J. Am. Chem. Soc. 1960, 82: 5791 - 19 The cause of E-selectivity in this reaction is not clear, but isomerization of the Z-vinylruthenium 4 to the E-isomer could occur via ruthenium alkylidene complex because of the presence of coordinative methoxy group at the 2-position. An example of the reaction via ruthenium alkylidene complex, see:
Trost BM.Müller TJJ.Martinez J. J. Am. Chem. Soc. 1995, 117: 1888 - 20
Liebeskind LS.Chidambaram R.Mitchell D. Pure Appl. Chem. 1988, 60: 27 ; and references cited therein
References and Notes
It is assumed that Lewis acid plays the role as an activating reagent of MVK. The addition of Brønsted acid (CSA), Brønsted base (K2CO3, pyridine) or Lewis base (PPh3) caused a decrease in the product yield and/or an elongation of the reaction time.
12
General Procedure for the Ruthenium-Catalyzed Ring Expansion Reaction (entry 12 in Table 1).
To a stirred solution of ethynylcyclobutanol (1a, 47.7 mg, 202 µmol) in toluene (1.0 mL) were added MVK (70.0 mg, 1.01 mmol), anhyd CeCl3 (10.0 mg, 40.4 µmol) and CpRu(PPh3)2Cl (14.7 mg, 20.2 µmol) at r.t., and stirring was continued for 2 h at 80 °C. After filtration of the reaction mixture using EtOAc with small amount mixture of silica gel and a Celite® pad followed by evaporation of the eluate, the residue was chromatographed on silica gel with hexane-EtOAc (92:8 v/v) as eluent to give the (Z)-cyclopentanone (Z)-2a (33.4 mg, 54%) and (E)-cyclopentanone (E)-2a (8.8 mg, 14%) as colorless oil, respectively.
Compound (Z)-2a: IR (neat): 1713, 1639 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.87 (6 H, t, J = 7.2 Hz), 1.13-1.46 (16 H, m), 1.75 (2 H, t, J = 7.6 Hz), 2.14 (3 H, s), 2.49 (2 H, td, J = 7.6, 2.0 Hz), 2.54 (2 H, t, J = 7.2 Hz), 2.90 (2 H, dt, J = 7.6, 7.2 Hz), 5.97 (1 H, tt, J = 7.6, 2.0 Hz). 13C NMR (150 MHz, CDCl3): δ = 14.0, 22.4, 22.5, 23.7, 27.3, 29.6, 30.7, 32.5, 35.2, 43.1, 53.6, 136.7, 138.7, 208.2, 212.1. MS: m/z = 306 [M+]. HRMS: m/z calcd for C20H34O2 [M+]: 306.2559; found: 306.2554.
Compound (E)-2a: IR (neat): 1715, 1651 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.86 (6 H, t, J = 6.8 Hz), 1.14-1.47 (16 H, m), 1.79 (2 H, t, J = 7.2 Hz), 2.16 (3 H, s), 2.40 (2 H, dt, J = 7.5, 2.0 Hz), 2.61 (2 H, t, J = 7.0 Hz), 6.45 (1 H, tt, J = 7.5, 2.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 14.0, 22.5, 23.2, 23.6, 23.7, 29.9, 30.7, 32.5, 35.2, 41.9, 52.5, 134.3, 138.7, 207.1, 210.4. MS: m/z 306 [M+]. HRMS:
m/z calcd for C20H34O2 [M+]: 306.2559; found: 306.2572.
MOPAC 2000/AM1 calculation indicated that (E)-2a is thermodynamically more stable than (Z)-2a by 0.79 kcal/mol.