Subscribe to RSS
DOI: 10.1055/s-2006-947359
Opposite Regioselectivity in the Sequential Ring-Opening of 2-(Alkanoyloxymethyl)aziridinium Salts by Bromide and Fluoride in the Synthesis of Functionalized β-Fluoro Amines
Publication History
Publication Date:
12 July 2006 (online)
Abstract
1-Arylmethyl-2-(bromomethyl)aziridines were converted into the corresponding 2-(alkanoyloxymethyl)aziridines upon treatment with potassium 2-methylpropanoate or potassium 2-methylbutyrate in DMSO in excellent yields, following regioselective ring-opening towards N-(2-bromo-3-alkanoyloxypropyl)amines using allyl bromide or an arylmethyl bromide in acetonitrile. Treatment of the latter β-bromo amines with tetrabutylammonium fluoride in acetonitrile afforded 2-amino-1-fluoropropanes as the major compounds (72-86%) besides the isomeric 1-amino-2-fluoropropanes in minor quantities (14-28%). The ring-opening of the intermediate aziridinium salts by bromide and fluoride in acetonitrile resulted in a different regioselectivity with a preferential attack of bromide at the more hindered carbon atom and of fluoride at the less hindered carbon atom of the aziridinium ion.
Key words
2-(bromomethyl)aziridines - aziridinium salts - β-fluoro amines - ring-opening - substitution
-
1a
Narimatsu S.Arai T.Watanabe T.Masubuchi Y.Horie T.Suzuki T.Ishikawa T.Tsutsui M.Kumagai Y.Cho AK. Chem. Res. Toxicol. 1997, 10: 289 -
1b
Bair KW.Tuttle RL.Knick VC.Cory M.McKee DD. J. Med. Chem. 1990, 33: 2385 -
1c
Bair KW.Andrews CW.Tuttle RL.Knick VC.Cory M.McKee DD. J. Med. Chem. 1991, 34: 1983 - 2
Elliott AJ. In Chemistry of Organic Fluorine Compounds II: A Critical ReviewHudlicky M.Pavlath AE. ACS Monograph 187, American Chemical Society; Washington DC: 1995. p.1119-1125 -
3a
Qiu XL.Meng WD.Qing FL. Tetrahedron 2004, 60: 6711 -
3b
Sutherland A.Willis CL. Nat. Prod. Rep. 2000, 17: 621 -
3c
Kollonitsch J. In Biomedicinal Aspects of Fluorine ChemistryFiller R.Kobayashi Y. Elsevier; Amsterdam: 1993. -
4a
Nagabhushan TL. inventors; US 4235892. ; Chem. Abstr. 1980, 94, 139433 -
4b
Wu G.Schumacher DP.Tormos W.Clark JE.Murphy BL. J. Org. Chem. 1997, 62: 2996 -
4c
Stanek J.Frei J.Mett H.Schneider P.Regenass U. J. Med. Chem. 1992, 35: 1339 -
4d
Hennequin LFA,Gibson KH, andFoote KM. inventors; PCT Int. Appl. WO 2003047582 A1. ; Chem. Abstr. 2003, 139, 36516 -
5a
Bravo P.Resnati G.Zappala C. J. Fluorine Chem. 1992, 59: 153 -
5b
Okada T.Tsuji T.Tsushima T.Yoshida T.Matsuura S. J. Heterocycl. Chem. 1991, 28: 1061 -
5c
Foster AB.Jarman M.Kinas RW.Van Maanen JMS.Taylor GN.Gaston JL.Parkin A.Richardson AC. J. Med. Chem. 1981, 24: 1399 -
6a
De Kimpe N.Jolie R.De Smaele D. J. Chem. Soc., Chem. Commun. 1994, 1221 -
6b
De Kimpe N.De Smaele D.Szakonyi Z. J. Org. Chem. 1997, 62: 2448 -
6c
Abbaspour Tehrani K.Van Nguyen T.Karikomi M.Rottiers M.De Kimpe N. Tetrahedron 2002, 58: 7145 -
6d
D’hooghe M.Waterinckx A.De Kimpe N. J. Org. Chem. 2005, 70: 227 -
6e
D’hooghe M.Rottiers M.Jolie R.De Kimpe N. Synlett 2005, 931 -
8a
Davoli P.Forni A.Moretti I.Prati F.Torre G. Tetrahedron 2001, 57: 1801 -
8b
Davoli P.Caselli E.Bucciarelli M.Forni A.Torre G.Prati F. J. Chem. Soc., Perkin Trans. 1 2002, 1948 -
8c
Risberg E.Fischer A.Somfai P. Tetrahedron 2005, 61: 8443 -
8d
Bilke JL.Dzuganova M.Fröhlich R.Würthwein E.-U. Org. Lett. 2005, 7: 3267 -
9a
Chang J.-W.Bae JH.Shin S.-H.Park CS.Choi D.Lee WK. Tetrahedron Lett. 1998, 39: 9193 -
9b
Sugiyama S.Inoue T.Ishii K. Tetrahedron: Asymmetry 2003, 14: 2153 -
10a
D’hooghe M.Van Brabandt W.De Kimpe N. J. Org. Chem. 2004, 69: 2703 -
10b
D’hooghe M.Waterinckx A.Vanlangendonck T.De Kimpe N. Tetrahedron 2006, 62: 2295 -
10c
D’hooghe M.Van Speybroeck V.Waroquier M.De Kimpe N. Chem. Commun. 2006, 1554 -
13a
Pierre JL.Baret P.Rivoirard EM. J. Heterocycl. Chem. 1978, 15: 817 -
13b
Bassindale AR.Kyle PA.Soobramanien MC.Taylor PG. J. Chem. Soc., Perkin Trans. 1 2000, 439 -
13c
Weber K.Kuklinski S.Gmeiner P. Org. Lett. 2000, 2: 647 -
13d
Sim TB.Kang SH.Lee KS.Lee WK.Yun H.Dong Y.Ha H.-J. J. Org. Chem. 2003, 68: 104 -
13e
Gnecco D.Orea FL.Galindo A.Enríquez RG.Toscano RA.Reynolds WF. Molecules 2000, 5: 998 -
13f
Crousse B.Narizuka S.Bonnet-Delpon D.Begué J.-P. Synlett 2001, 679 -
13g
Testa L.Akssira M.Zaballos-García E.Arroyo P.Domingo LR.Sepúlveda-Arques J. Tetrahedron 2003, 59: 677 -
13h
O’Brien P.Towers TD. J. Org. Chem. 2002, 67: 304 -
13i
Katagiri T.Takahashi M.Fujiwara Y.Ihara H.Uneyama K. J. Org. Chem. 1999, 64: 7323 -
14a
Wade TN. J. Org. Chem. 1980, 45: 5328 -
14b
Alvernhe GM.Ennakoua CM.Lacombe SM.Laurent AJ. J. Org. Chem. 1981, 46: 4938 -
14c
Alvernhe GM.Lacombe S.Laurent A. Tetrahedron Lett. 1980, 21: 289
References and Notes
As a representative example, the synthesis of 1-(3-methyl-benzyl)aziridin-2-ylmethyl 2-methylpropanoate 4a is described. To a solution of isobutyric acid (0.88 g, 1.0 equiv) in DMSO (15 mL) was added K2CO3 (2.76 g, 2 equiv), and the resulting suspension was stirred for 30 min at r.t. Subsequently, 2-(bromomethyl)-1-(3-methylbenzyl)-aziridine (3a, 2.40 g, 0.01 mol) was added, and the mixture was heated at 80 °C for 15 h. The reaction mixture was poured into H2O (20 mL) and extracted with Et2O (3 × 15 mL). The combined organic extracts were washed with H2O (2 × 15 mL) and brine (20 mL). Drying (MgSO4), filtration of the drying agent and evaporation of the solvent afforded 1-(3-methylbenzyl)aziridin-2-ylmethyl 2-methylpropanoate (4a), which was purified by filtration through silica gel (hexane-EtOAc, 5:3).
1-(3-Methylbenzyl)aziridin-2-ylmethyl 2-methylpropanoate (4a): R
f
= 0.25; light-yellow oil; yield 85%. 1H NMR (300 MHz, CDCl3): δ = 1.10 and 1.11 [6 H, 2 d, J = 6.9 Hz, (CH
3)2CH], 1.51 [1 H, d, J = 6.3 Hz, (H
cisCH)N], 1.77 [1 H, d, J = 3.3 Hz, (HCH
trans)N], 1.82-1.89 (1 H, m, NCH), 2.34 (3 H, s, CH3Ar), 2.47 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 3.30 and 3.53 [2 H, 2 d, J = 13.3 Hz, N(HCH)Ar], 3.81 and 4.20 [2 H, 2 × dd, J = 11.6, 7.4, 4.5 Hz, (HCH)O], 7.06-7.24 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.89 [(CH3)2CH], 21.39 (CH3Ar), 31.76 [(HcisCHtrans)N], 33.86 [(CH3)2
CH], 37.21 (CHN), 64.40 (NCH2Ar), 66.55 (CH2O), 125.14, 127.87, 128.27 and 128.85 (HCarom), 137.93 and 138.73 (2 × Carom,quat), 176.99 (CO). IR (NaCl): 1733 cm-1 (C=O). MS (70 eV): m/z (%) = 247 (19) [M+], 160 (38), 158 (17), 105 (100), 72 (21), 71 (38). Anal. Calcd for C15H21NO2: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.97; H, 8.74; N, 5.50.
As a representative example, the synthesis of 3-[allyl-(3-methylbenzyl)amino]-2-bromopropyl 2-methylpropanoate (6a) is described. To a solution of 1-(3-methylbenzyl)-aziridin-2-ylmethyl 2-methylpropanoate (4a, 2.47 g, 10 mmol) in MeCN (50 mL) was added allyl bromide (1.45 g, 1.2 equiv) under stirring, and the resulting mixture was heated for 6 h under reflux. Evaporation of the solvent afforded 3-[allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methylpropanoate (6a), which was purified by means of column chromatography (hexane-EtOAc, 49:1) on silica gel in order to obtain an analytically pure sample.
3-[Allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methyl-propanoate (6a): colorless liquid; yield 90%; R
f
= 0.04 (hexane-EtOAc, 49:1). 1H NMR (300 MHz, CDCl3): δ = 1.17 [6 H, d, J = 7.2 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.54 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 2.84 and 2.93 [2 H, 2 × dd, J = 13.7, 8.8, 5.9 Hz, N(HCH)CHBr], 3.06 and 3.17 [2 H, 2 × dd, J = 14.0, 6.9, 6.1 Hz, N(HCH)CH=CH2], 3.53 and 3.67 [2 H, 2 d, J = 13.5 Hz, N(HCH)Ar], 4.07-4.16 (1 H, m, CHBr), 4.27 and 4.50 [2 H, 2 × dd, J = 11.9, 6.3, 3.7 Hz, (HCH)O], 5.15-5.22 (2 H, m, CH=CH
2), 5.79-5.92 (1 H, m, CH=CH2), 7.05-7.26 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.87 and 18.96 [(CH3)2CH], 21.41 (CH3Ar), 33.94 [(CH3)2
CH], 48.77 (CHBr), 57.50, 57.67 and 59.12 (3 × CH2N), 65.70 (CH2O), 118.07 (CH=CH2), 125.93, 127.95, 128.25 and 129.61 (HCarom), 135.23 (CH=CH2), 137.90 and 138.70 (2 × Carom,quat), 176.48 (CO). IR (NaCl): 1736 cm-1 (C=O). MS (70 eV): m/z (%) = 368, 370 (23) [M+ + 1], 288 (100) [M+ - Br]. Anal. Calcd for C18H26BrNO2: C, 58.70; H, 7.12; N, 3.80. Found: C, 58.91; H, 7.31; N, 3.66.
As a representative example, the synthesis of 2-[allyl(3-methylbenzyl)amino]-3-fluoropropyl 2-methylpropanoate (7a) and 3-[allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methylpropanoate (8a) is described. To a solution of 3-[allyl(3-methylbenzyl)amino]-2-bromopropyl 2-methyl-propanoate (6a, 3.68 g, 10 mmol) in MeCN (50 mL) was added TBAF·3H2O (4.73 g, 1.5 equiv) under stirring and the resulting mixture was heated for 7 h under reflux. Extraction with H2O (40 mL) and Et2O (3 × 30 mL), drying (MgSO4), filtration of the drying agent and evaporation of the solvent afforded a mixture of 2-[allyl(3-methylbenzyl)amino]-3-fluoropropyl 2-methylpropanoate (7a, 72%) and 3-[allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methylpropanoate (8a, 28%). Both isomers were separated by means of column chromatography (hexane-ethyl acetate, 34:1) in order to obtain analytically pure samples.
2-[Allyl(3-methylbenzyl)amino]-3-fluoropropyl 2-methyl-propanoate (7a): colorless liquid; R
f
= 0.16 (hexane-EtOAc, 34:1). 1H NMR (300 MHz, CDCl3): δ = 1.18 and 1.19 [6 H, 2 d, J = 6.9 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.57 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 3.20-3.35 (3 H, m, CHN and NCH
2CH=CH2), 3.73 and 3.76 [2 H, 2 d, J = 14.3 Hz, N(HCH)Ar], 4.20 [1 H, dd, J = 11.4, 6.5 Hz, (HCH)O], 4.30 [1 H, ddd, J = 11.4, 6.5, 1.2 Hz, (HCH)O], 4.50 and 4.66 [2 H, dd, J = 47.5, 5.1 Hz, (HCH)F], 5.09-5.24 (2 H, m, CH=CH
2), 5.73-5.86 (1 H, m, CH=CH2), 7.04-7.32 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 19.06 [(CH3)2CH], 21.52 (CH3Ar), 34.12 [(CH3)2
CH], 54.06 and 54.81 (2 × CH2N), 56.85 (d, J = 18.5 Hz, CHN), 61.55 (d, J = 5.8 Hz, CH2O), 82.34 (d, J = 171.9 Hz, CH2F), 117.28 (CH=CH2), 125.57, 127.82, 128.26 and 129.22 (HCarom), 136.84 (CH=CH2), 137.94 and 139.87 (2 × Carom,quat), 176.92 (CO). 19F (CCl3F): δ = -227.42 (td, J = 46.0, 22.4 Hz, CH2F). IR (NaCl): 1738 cm-1 (C=O). MS (70 eV): m/z
(%) = 307 (1) [M+], 274 (5) [M+ - CH2F], 206 (45), 174 (40), 105 (100). Anal. Calcd for C18H26FNO2: C, 70.33; H, 8.53; N, 4.56. Found: C, 70.50; H, 8.70; N, 4.41.
3-[Allyl(3-methylbenzyl)amino]-2-fluoropropyl 2-methyl-propanoate (8a): colorless liquid; R
f
= 0.09 (hexane-EtOAc, 34:1). 1H NMR (300 MHz, CDCl3): δ = 1.16 [6 H, d, J = 7.2 Hz, (CH
3)2CH], 2.34 (3 H, s, CH3Ar), 2.55 [1 H, sept, J = 7.0 Hz, (CH3)2CH], 2.74 (2 H, dd, J = 19.8, 5.5 Hz, NCH
2CHF), 3.15 (2 H, d, J = 6.3 Hz, NCH
2CH=CH2), 3.62 (2 H, s, NCH2Ar), 4.11-4.34 (2 H, m, CH2O), 4.76 (1 H, dddd, J = 48.8, 11.7, 5.8, 3.0 Hz, CHF), 5.14-5.23 (2 H, m, CH=CH
2), 5.85-5.93 (1 H, m, CH=CH2), 7.04-7.25 (4 H, m, CHarom). 13C NMR (68 MHz, CDCl3): δ = 18.92 [(CH3)2CH], 21.42 (CH3Ar), 33.88 [(CH3)2
CH], 53.39 (d, J = 23.1 Hz, NCH2CHF), 57.82 (NCH2CH=CH2), 59.13 (NCH2Ar), 64.42 (d, J = 21.9 Hz, CH2O), 90.33 (d, J = 173.1 Hz, CHF), 117.96 (CH=CH2), 125.95, 127.89, 128.22 and 129.61 (HCarom), 135.43 (CH=CH2), 137.90 and 138.83 (2 × Carom,quat), 176.80 (CO). 19F (CCl3F): δ = -189.50 to
-189.34 (m, CHF). IR (NaCl): 1736 cm-1 (C=O). MS
(70 eV): m/z (%) = 307 (3) [M+], 174 (99), 105 (100). Anal. Calcd for C18H26FNO2: C, 70.33; H, 8.53; N, 4.56. Found: C, 70.54; H, 8.72; N, 4.32.