Subscribe to RSS
DOI: 10.1055/s-2006-948167
Regio- and Diastereochemical Aspects of the Additions of Li or Zn Derivatives of Methoxypropene to Oxazolidines Derived from Phenylglycinol
Publication History
Publication Date:
24 July 2006 (online)
Αbstract
Diastereoselective additions of methoxypropene-derived lithium and zinc reagents to oxazolidines are investigated. The lithium allylic carbanion reacts with oxazolidines to afford mainly the β-amino alcohols with an enol ether function (γ-adduct) and the zinc derivative leads to amino alcohols with an allyl ether function (α-adduct).
Key words
oxazolidine - methoxypropene - organolithium and organozinc reagents - β-amino alcohols
- For reviews, see:
-
1a
Werstiuk NH. Tetrahedron 1983, 39: 205 -
1b
Katritzky AR.Piffl M.Lang H.Anders E. Chem. Rev. 1999, 99: 665 -
1c For a review on alkoxyallylstannane, see:
Marshall JA. Chem. Rev. 1996, 96: 31 - For the synthesis and reactivity of metallated allylic ethers, see for example:
-
2a
Brown HC.Jadhav PK.Bhat KS. J. Am. Chem. Soc. 1988, 110: 1535 -
2b
Evans DA.Andrews GC.Buckwalter B. J. Am. Chem. Soc. 1974, 96: 5560 -
2c
Still WC.Macdonald TL. J. Org. Chem. 1976, 41: 3620 -
2d
Yamamoto Y.Yatagai H.Saito Y.Maruyama K. J. Org. Chem. 1984, 49: 1096 -
2e
Yamamoto Y.Saito Y.Maruyama K. J. Organomet. Chem. 1985, 292: 311 -
2f
Wuts PGM.Bigelow SS. J. Org. Chem. 1982, 47: 2498 -
2g
Zschage O.Hoppe D. Tetrahedron 1992, 48: 5657 -
2h
Paulsen H.Graeve C.Hoppe D. Synthesis 1996, 141 -
2i
Paulsen H.Graeve C.Fröhlich R.Hoppe D. Synthesis 1996, 145 -
2j
Berrien J.-F.Raymond M.-N.Moskowitz H.Mayrargue J. Tetrahedron Lett. 1999, 40: 1313 -
2k
Ferreira F.Herse C.Riguet E.Normant JF. Tetrahedron Lett. 2000, 41: 1733 - For examples of addition of oxygenated allylmetals to imines, see:
-
3a
Keinicke L.Fristrup P.Norrby P.-O.Madsen R. J. Am. Chem. Soc. 2005, 127: 15756 -
3b
Marshall JA.Gill K.Seletsky BM. Angew. Chem. Int. Ed. 2000, 953 -
3c
Jiang S.Agoston GE.Chen T.Cabal M.-P.Turos E. Organometallics 1995, 14: 4697 -
3d
Fiorelli C.Maini L.Martelli G.Savoia D.Zazzeta C. Tetrahedron 2002, 58: 8679 - For examples of addition of silylated allylmetals to imines, see:
-
4a
Wuts PGM.Jung Y.-W. J. Org. Chem. 1991, 56: 365 -
4b
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2002, 67: 1496 -
4c
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2000, 65: 4435 - 5 For examples of addition of sulfonimidoyl allylmetals to imines, see:
Schleusner M.Gais H.-J.Koep S.Raabe G. J. Am. Chem. Soc. 2002, 124: 7789 - For reviews, see:
-
6a
Block R. Chem. Rev. 1998, 98: 1407 -
6b
Enders D.Reinhold U. Tetrahedron: Asymmetry 1987, 8: 1895 -
6c
Alvaro G.Savoia D. Synlett 2002, 651 ; and references cited therein -
7a For a review, see:
Ding H.Friestad GK. Synthesis 2005, 2815 - For recent examples of addition of allylmetals to imines, see:
-
7b
Bandini M.Cozzi PG.Umami-Ronchi A.Villa M. Tetrahedron 1999, 55: 8103 -
7c
Van der Sluis M.Dalmolen J.de Lange B.Kaptein B.Kellogg RM.Broxterman QB. Org. Lett. 2001, 3: 3943 -
7d
Lee C.-LK.Ling HY.Loh T.-P. J. Org. Chem. 2004, 69: 7787 -
7e
Badorrey R.Cativiela C.Diàz-de-Villegas MD.Diez R.Gàlvez JA. Eur. J. Org. Chem. 2002, 3763 -
7f
Okamoto S.Fukuhara K.Sato F. Tetrahedron Lett. 2000, 41: 5561 -
7g
Gastner T.Ishitani H.Akiyama R.Kobyashi S. Angew. Chem. Int. Ed. 2001, 1897 -
7h
Koriyama Y.Nozawa A.Hayakawa R.Shimizu M. Tetrahedron 2002, 58: 9621 -
7i
Miniejew C.Outurquin F.Pannecoucke X. Tetrahedron 2005, 61: 447 - For examples of addition of allylmetals to oxazolidines, see:
-
8a
Vilaivan T.Winotapan C.Banphavichit V.Shinada T.Ohfune Y. J. Org. Chem. 2005, 70: 3464 -
8b
Lebouvier N.Laroche C.Huguenot F.Brigaud T. Tetrahedron Lett. 2002, 43: 2827 -
8c
Allin SM.Button MAC.Baird RD. Synlett 1998, 1117 -
8d
Legros J.Meyer F.Coliboeuf M.Crousse B.Bonnet-Delpon D.Bégué J.-P. J. Org. Chem. 2003, 68: 6446 -
9a
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2002, 67: 2424 -
9b
Agami C.Comesse S.Guesné S.Kadouri-Puchot C.Martinon L. Synlett 2003, 1058 - 10
LemadTalancé V.Banide E.Bertin B.Comesse S.Kadouri-Puchot C. Tetrahedron Lett. 2005, 46: 8023 - 18 We proved that neither racemization nor epimerization occurred during the formation of the hydrochloride salts. After a basic treatment (NaOH, 1 M), we recovered free unchanged starting amino alcohol.
-
19a
Kuwajima I.Nakamura E. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergammon Press; Oxford: 1991. p.441-454 -
19b
Kubota K.Mori S.Nakamura M.Nakamura E. J. Am. Chem. Soc. 1998, 120: 13334 -
20a
Organolithiums in Enantioselective Synthesis
Hodgson DM. Springer; Heidelberg: 2003. -
20b
The Chemistry of Organolithium Compounds
Rappoport Z.Marek I. Wiley; New York: 2004.
References and Notes
Typical Procedure for the Synthesis of Compounds 4. s-BuLi (1.3 M in hexane-cyclohexane, 5.2 mL, 6.8 mmol) was added at -78 °C to a solution of allyl methyl ether (0.60 mL, 6.4 mmol) in THF (10 mL). After stirring for 30 min at -78 °C a solution of oxazolidine (2 mmol) in THF (10 mL) was added dropwise. After the reaction was complete, the mixture was quenched at -78 °C by addition of sat. aq NH4Cl (15 mL). The aqueous layer was extracted with Et2O (3 × 15 mL) and the organic layers were combined, dried over MgSO4 and evaporated. The residue was then purified by chromatography on silica gel.
12
Data for Compound 4d (R = Ph): [2
S
,2 (1
S
)]-2-(4-Methoxy-1-phenylbut-3-enylamino)-2-phenylethanol.
Solid, yield 67%; mp 63 °C; [α]D
20 +37 (c 1.1, CHCl3). 1H NMR: δ = 7.33-7.20 (m, 10 H), 5.92 (dt, J = 6.3, 1.3 Hz, 1 H), 4.24 (dd, J = 7.3, 6.3 Hz, 1 H), 3.92 (dd, J = 7.1, 4.6 Hz, 1 H), 3.77 (dd, J = 10.6, 4.6 Hz, 1 H), 3.70 (t, J = 6.4 Hz, 1 H), 3.56 (s, 3 H), 3.53 (dd, J = 10.6, 7.3 Hz, 1 H), 2.9 (br d, 1 H), 2.62-2.45 (m, 2 H), 1.78 (ls, 1 H). 13C NMR: 147.7, 144.0, 141.4, 128.5, 128.2, 127.4, 127.1, 127.0, 126.9, 102.5, 65.7, 61.3, 59.6, 59.5, 31.0. IR (CHCl3): 3374, 3031, 2856, 1660, 1109 cm-1. Anal. Calcd for C19H23NO2: C, 76.73; H, 7.80; N, 4.71. Found: C, 76.60; H, 7.83; N, 4.69.
Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 293382.
14This stereochemical outcome is well established for the attack of organometallic reagents onto phenylglycinol-derived oxazolidines, see, ref. 4b and 6a.
15
Typical Procedure for the Synthesis of Compounds 5.
s-BuLi (1.3 M in hexane-cyclohexane, 5.2 mL, 6.8 mmol) was added at -78 °C to a solution of allyl methyl ether (0.60 mL, 6.4 mmol) in THF (10 mL). After stirring for 30 min at -78 °C, a solution of zinc bromide (1 M in THF, 7.2 mL, 7.2 mmol) was added. The mixture was stirred at -78 °C for 40 min and then a solution of oxazolidine (2 mmol) in THF (10 mL) was added dropwise. After completion, the mixture was quenched (at -78 °C for 5a and 5d and at r.t. for 5b and 5c) by addition of sat. aq NH4Cl (20 mL). The aqueous layer was extracted with Et2O (3 × 20 mL) and the organic layers were combined, dried over MgSO4 and evaporated. The residue was purified by chromatography on silica gel.
Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre with the deposition numbers CCDC 602015 for 5b, CCDC 612649 for 5d and CCDC 612650 for 5c.
17Data for Compound 5d (R = Ph): [2 S ,2 (2 S ,1 S )]-2-(2-Methoxy-1-phenylbut-3-enylamino)-2-phenylethanol. Solid, yield 69%; mp 58 °C; [α]D 20 +38 (c 1.1, CHCl3). 1H NMR: δ = 7.32-7.22 (m, 10 H), 5.62-5.54 (m, 1 H), 5.28-5.20 (m, 2 H), 3.89-3.79 (m, 4 H), 3.61-3.56 (m, 1 H), 3.30 (s, 3 H). 13C NMR: 141.6, 140.4, 135.5, 128.4, 128.3, 128.0, 127.2, 119.1, 86.1, 65.2, 63.8, 61.1, 56.8. IR (CHCl3): 3390, 2925, 1764, 1602, 1453, 1094, 699 cm-1. Anal. Calcd for C19H23NO2: C, 76.73; H, 7.80; N, 4.71. Found: C, 76.54; H, 7.79; N, 4.54.