Subscribe to RSS
DOI: 10.1055/s-2006-948170
Role of the Acid Group in the Pictet-Spengler Reaction of α-Amino Acids
Publication History
Publication Date:
24 July 2006 (online)
Abstract
Pictet-Spengler reactions of different α-amino acids in very mild conditions have been studied. Excellent yields were obtained by simply heating the free acids in alcoholic solvents, both in the presence and absence of one equivalent of Et3N. However, worse results were obtained for the corresponding methyl esters under the same conditions. These conditions are compatible with many functional groups.
Key words
Pictet-Spengler - mild conditions - histidine - dopa - phenylalanine - amino acids - free acid - microwave - alcoholic solvents
- 1
Pictet A.Spengler T. Ber. Dtsch. Chem. Ges. 1911, 44: 2030 - 2
Whaley WM.Govindachari TR. In Organic Reactions Vol. 4:Adams R. John Wiley and Sons; New York: 1951. p.151 - 3
Konda M.Shioiri T.Yamada S. Chem. Pharm. Bull. 1975, 23: 1063 - 4
Konda M.Shioiri T.Yamada S. Chem. Pharm. Bull. 1977, 25: 69 - 5
Tatsui G. J. Pharm. Soc. Jpn. 1928, 48: 92 -
6a
Hamaguchi F.Nagasaka T.Ohki S. Yakugaku Zasshi 1974, 94: 351 -
6b
Stuart K.Woo-Ming R. Heterocycles 1975, 3: 223 -
6c
Bergman J. Acta Chem. Scand. 1971, 25: 3296 -
6d
Strandtmann M.Puchalski C.Shavel J. J. Med. Chem. 1964, 7: 141 -
6e
Degraw J.Kennedy JG.Skinner WA. J. Med. Chem. 1967, 10: 127 -
6f
Julia M.Bagot J.Siffert O. Bull. Soc. Chim. Fr. 1973, 1424 -
6g
Brown RT.Chapple CL. J. Chem. Soc., Chem. Commun. 1973, 886 - 7
Grieco P.Campiglia P.Gomez-Monterrey I.Novellino E. Tetrahedron Lett. 2002, 6297 - 8
Beke G.Szabó LF.Podányi B. J. Nat. Prod. 2002, 65: 649 - 9
Cox E.Cook JM. Chem. Rev. 1995, 95: 1797 - 10
Jackson AH.Smith AE. Tetrahedron 1968, 24: 403 - 11
Manini P.D’Ischia M.Prota G. J. Org. Chem. 2001, 66: 5048 - 12
Soerens D.Sandrin J.Ungemach F.Mokry P.Wu GS.Yamanaka E.Hutchins L.DiPierro M.Cook JM. J. Org. Chem. 1979, 44: 535 -
13a
Fodor G.Nagubandi S. Tetrahedron 1980, 36: 1279 -
13b
Sandrin J.Soerens D.Mokry P.Cook JM. Heterocycles 1977, 6: 1133 -
13c
Zhang L.Cook JM. Heterocycles 1988, 27: 2759 -
13d
Behforonz M.West SJ.Chakrabarty C.Dusk DA.Zarrimaye H. Heterocycles 1992, 48: 1805 -
13e
Baley PD.Hollinshead SP.McLay NR.Morgan K.Palmer SJ.Prince SN.Reynolds CD.Wood SD. J. Chem. Soc., Perkin Trans. 1 1993, 431 -
13f
Massiot G.Mulamba T. J. Chem. Soc., Chem. Commun. 1983, 1147 -
13g
Khnong Q.Nemlin J.Kervagoret J.Pancrazi A. Tetrahedron 1992, 48: 6689 -
13h
Waldmann H.Schmidt G.Jansen M.Geb J. Tetrahedron Lett. 1993, 34: 5867 - 15
Bison G,Schlupp J,Winterscheid J, andThewalt K. inventors; US 4791210. ; Chem. Abstr. 1987, 109, 73455 - 17
Guiso M.Marra C.Cavarischia C. Tetrahedron Lett. 2001, 42: 6531
References and Notes
The reaction has been done also with aldehydes containing functionalities such as acetals, esters, amides. These functionalities otherwise not stable to acidic catalyst have been proven to give good yields in these conditions.
16
General Procedure.
To a solution of the l-histidine or l-Dopa derivative (0.2 mmol) in 0.5 mL of the alcoholic solvent were added Et3N (equiv indicated in the tables) and the aldehyde (0.24 mmol, 1.2 equiv). The mixture was stirred at 70 °C until completion. The mixture was evaporated to dryness to give the crude. For purifying the crude and eliminating the aldehyde in excess the mixture was taken up in DMF (1 mL) and sulfonylhydrazine resin (50 mg, 2.54 mmol/g) was added. The suspension was stirred for 4 h at 60 °C. The mixture was filtered and the resin washed with DMF (2 × 1 mL). The filtrate was evaporated to dryness to give the desired product.
Compound 7: 1H NMR (400 MHz, CD3OD): δ (mixture of diastereoisomers a + b) = 3 (m, H-7 a + b, 4 H), 3.7 (s, CO2Me, a, 3 H), 3.76 (s, CO2Me, b, 3 H), 3.85 (dd, H-6, a, 2 H), 3.90 (dd, H-6, b, 2 H), 5 (s, H-4, b, 1 H), 5.20 (s, H-4, a, 1 H), 7.40 (m, Ar) ppm. ESI-MS: m/z = 257.9 [MH+].
Compound 8: 1H NMR (400 MHz, CD3OD): δ (mixture of diastereoisomers in the form of triethylamonium salt) = 3.1 (m, H-7, a + b, 4 H), 3.66 (dd, H-6, a, 2 H), 3.76 (dd, H-6, b, 2 H), 5.20 (s, H-4, b, 1 H), 5.40 (s, H-4, a, 1 H), 7.50 (m, Ar) ppm. ESI-MS: m/z = 243.9 [MH+].
Compound 10: 1H NMR (400 MHz, CD3OD): δ (mixture of diastereoisomers) = 3.25 (m, H-3, a + b, 4 H), 3.80 (s, CO2Me, a, 3 H), 3.90 (s, CO2Me, b, 3 H), 4.28 (dd, H-2, a, 2 H), 4.62 (dd, H-2, b, 2 H), 5.60 (s, H-8, b, 1 H), 5.8 (s, H-8, a, 1 H), 6.0 (s, H-4, b, 1 H), 6.25 (s, H-4, a, 1 H), 6.68 (s, H-7, b, 1 H), 6.69 (s, H-8, a, 1 H), 7.5 (m, Ar) ppm. ESI-MS: m/z = 300.2 [MH+].
Compound 13: 1H NMR (400 MHz, CD3OD): δ (mixture of diastereoisomers in the form of triethylamonium salt): = 3.20 (m, H-3, a + b, 4 H), 3.80 (dd, H-2, a, 2 H), 3.90 (dd, H-2, b, 2 H), 5.40 (s, H-8, b, 1 H), 5.60 (s, H-8, a, 1 H), 6.00 (s, H-4, b, 1 H), 6.25 (s, H-4, a, 1 H), 6.68 (s, H-7, b, 1 H), 6.70 (s, H-8, a, 1 H), 7.40 (m, Ar) ppm. ESI-MS: m/z = 286.2 [MH+].
Reaction with 3,4-dimethoxy-l-phenylalanine in which the hydroxy groups are methylated and the carboxylic acid is in its free form showed no reaction under these mild conditions. Methoxy groups are less activating than hydroxy groups on aryl systems. It seems that the intramolecular acidic catalysis only promoted reaction for activated systems.