Abstract
A rapid oxidation of primary and secondary alcohols using catalytic amounts of TEMPO and Yb(OTf)3 in combination with a stoichiometric amount of iodosylbenzene (PhIO) is described. This procedure operates at room temperature or above to afford carbonyl compounds in excellent yields without over-oxidation to carboxylic acids. Oxidation of primary alcohols in the presence of secondary alcohols proceeded with good selectivity.
Key words
alcohols - iodosylbenzene - oxidation - TEMPO - ytterbium trifluoromethanesulfonate
References and Notes
1
Hudlicky M.
Oxidations in Organic Chemistry
ACS;
Washington DC:
1990.
2a
Cainelli G.
Cardillo G.
Chromium Oxidations in Organic Chemistry
Springer;
New York:
1984.
2b
Luzzio FA.
Org. React. (N.Y.)
1998,
53:
1
3a
Fatiadi AJ.
Synthesis
1976,
65
3b
Fatiadi AJ.
Synthesis
1976,
133
3c
Fatiadi AJ.
Synthesis
1987,
85
4a
Mancuso AJ.
Swern D.
Synthesis
1981,
165
4b
Tidwell TT.
Synthesis
1990,
857
4c
Tidwell TT.
Org. React. (N.Y.)
1990,
39:
297
5 For a recent review, see: Tohma H.
Kita Y.
Adv. Synth. Catal.
2004,
346:
111
6
Dess DB.
Martin JC.
J. Org. Chem.
1983,
48:
4155
7
Frigerio M.
Santagostino M.
Sputore S.
Palmisano G.
J. Org. Chem.
1995,
60:
7272
For reviews of TEMPO-catalyzed alcohol oxidations, see:
8a
Bobitt JM.
Flores MCL.
Heterocycles
1988,
27:
509
8b
Yamaguchi M.
Miyazawa T.
Takata T.
Endo T.
Pure Appl. Chem.
1990,
62:
217
8c
de Nooy AEJ.
Besemer AC.
van Bekkum HV.
Synthesis
1996,
1153
8d
Adam W.
Saha-Möller CR.
Ganseshpure PA.
Chem. Rev.
2001,
3499
8e
Sheldon RA.
Arends IWCE.
Ten Brink G.-J.
Dijksman A.
Acc. Chem. Res.
2002,
35:
774
Halogen-based reagents, X2 :
9a
Miyazama T.
Endo T.
Shiihashi S.
Okawara M.
J. Org. Chem.
1985,
50:
1332
9b
Bjørsvih H.-R.
Liguori L.
Costantino F.
Minisci F.
Org. Process Res. Dev.
2002,
6:
197
9c
Miller RA.
Hoerrner RS.
Org. Lett.
2003,
5:
285
9d
Liu R.
Liang X.
Dong C.
Hu X.
J. Am. Chem. Soc.
2004,
126:
4112
Bleach:
9e
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1987,
52:
2559
9f
Anelli PL.
Banfi S.
Montanari F.
Quici S.
J. Org. Chem.
1989,
54:
2970
9g
Siedlecka R.
Skarzewski J.
Mlochowski J.
Tetrahedron Lett.
1990,
31:
2177
9h
Bolm C.
Fey T.
Chem. Commun.
1999,
1795
9i
Dijksman A.
Arends IWCE.
Sheldon RA.
Chem. Commun.
2000,
271
9j NCS: Einhorn J.
Einhorn C.
Ratajczak F.
Pierre J.-L.
J. Org. Chem.
1996,
61:
7452
9k NaBrO2 : Inokuchi T.
Matsumoto S.
Nishiyama T.
Torii S.
J. Org. Chem.
1990,
55:
462
9l NaClO2 : Zhao M.
Li J.
Mano E.
Song Z.
Tschaen DM.
Grabowski EJJ.
Reider PJ.
J. Org. Chem.
1999,
64:
2564
Trichloroisocyanuric acid:
9m
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
3041
9n
De Luca L.
Giacomelli G.
Masala S.
Porcheddu A.
J. Org. Chem.
2003,
68:
4999
For examples of other TEMPO reoxidants. MCPBA:
10a
Cella JA.
Kelley JA.
Kenhan EF.
J. Org. Chem.
1975,
40:
1860
10b
Ganem B.
J. Org. Chem.
1975,
40:
1998
Oxone:
10c
Rychnovski SD.
Vaidyanathan R.
J. Org. Chem.
1999,
64:
310
10d
Bolm C.
Magnus AS.
Hildebrand JP.
Org. Lett.
2000,
2:
1173
11a
de Mico A.
Margarita R.
Parlanti L.
Vescovi A.
Piancatelli G.
J. Org. Chem.
1997,
62:
6974
11b
Epp JB.
Widlanski TS.
J. Org. Chem.
1999,
64:
293
11c
Sakuratani K.
Togo H.
Synthesis
2003,
21
11d
Van Der Bos LJ.
Litjens REJN.
Van den Berg RJBHN.
Overkleeft HS.
Van der Marel GA.
Org. Lett.
2005,
7:
2007
12
Vatèle J.-M.
Tetrahedron Lett.
2006,
47:
715
13
Kim SS.
Kim DW.
Synlett
2003,
1391 ; and references cited therein
14
Tohma H.
Maegawa T.
Takizawa S.
Kita Y.
Adv. Synth. Catal.
2002,
344:
328
For examples of activation of PhIO by acids or salts, see:
15a
Koser GF.
Wettach RH.
Troup JM.
Frenz BA.
J. Org. Chem.
1976,
41:
3609
15b
Moriarty RM.
Penmasta R.
Prakash I.
Tetrahedron Lett.
1985,
26:
4699
15c
Zefirov NS.
Zhdankin VV.
Dan’kov YV.
Sorokin VD.
Semerikov VN.
Koz’min AS.
Caple R.
Berglund BA.
Tetrahedron Lett.
1986,
27:
3971
15d
Yang Y.
Diederich F.
Valentine JS.
J. Am. Chem. Soc.
1991,
113:
7195
15e
Yokoo T.
Matsumoto K.
Oshima K.
Utimoto K.
Chem. Lett.
1993,
571
15f
Fukase K.
Kinoshita I.
Kanoh T.
Nakai Y.
Hasuoka A.
Kusumoto S.
Tetrahedron
1996,
52:
3897
15g
Ueno M.
Nabana T.
Togo H.
J. Org. Chem.
2003,
68:
6424
16 All new compounds gave satisfactory physical and analytical data.
17
Oxidation of Monoalcohols (Table 2) and Diols (Table 3, entries 1, 4, and 5); General Procedure. To a stirred solution of alcohol (1 mmol) in CH2 Cl2 (4 mL) were added TEMPO (8 mg, 5 mol%) and PhIO (286 mg, 1.3 equiv). The suspension was cooled to 0 °C and Yb(OTf)3 (12.5 mg, 2 mol%) was added. The reaction mixture was stirred at 0 °C or r.t. depending on the substrate until the alcohol was no longer detectable by TLC (the reaction mixture became almost limpid). The yellow slightly cloudy solution was poured onto a column of silica gel (10 g) and eluted with Et2 O-PE. The purity of each aldehyde or ketone was checked by NMR spectroscopy.
18 In the presence of 1.3 equivalent of PhIO, cis -1,2-cyclo-hexanedimethanol gave the γ-lactone (55% yield) and lactols (9%); 30% of the diol was recovered (as compared to Table 3, entry 2).
19
Oxidative Lactonization of Diols (Table 3, entry 2); Typical Procedure. To a solution of cis -1,2-cyclo-hexanedimethanol (0.15 g, 1.04 mmol) in CH2 Cl2 (5 mL) were added PhIO (0.594 g, 2.6 equiv) and TEMPO (16 mg, 0.1 equiv). The suspension was cooled to 0 °C and Yb(OTf)3 ·xH2 O (26 mg, 0.04 equiv) was added. The reaction was stirred at r.t. for 1 h and poured onto a column of silica gel. Elution with PE-Et2 O (1:1) gave cis -perhydro-phthalide (0.14 g, 96%) as an oil. 13 C and 1 H NMR data were identical with those described in the literature.