RSS-Feed abonnieren
DOI: 10.1055/s-2006-948195
Asymmetric Alkynyl Additions to Aldehydes Catalyzed by Tunable Oxovanadium(V) Complexes of Schiff Bases of β-Amino Alcohols
Publikationsverlauf
Publikationsdatum:
24. Juli 2006 (online)

Abstract
The first example of asymmetric alkynyl additions to aldehydes catalyzed by oxovanadium(V) catalysts of tridentate Schiff bases of β-amino alcohols 3a-h is reported. Catalytic reactions employing the best-performing catalyst 3g furnish chiral propargyl alcohols in good to excellent enantioselectivities from 73% to 99% ee.
Key words
oxovanadium complex - alkynylation - Schiff bases - β-amino alcohols - aromatic aldehydes - aliphatic aldehydes - propargyl alcohols
- 1 For references, please see:
Pu L. Tetrahedron 2003, 59: 9873 - 2
Corey EJ.Cimprich KA. J. Am. Chem. Soc. 1994, 116: 3151 -
3a
Frantz DE.Fässler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806 -
3b
Jiang B.Chen Z.Xiong W. Chem. Commun. 2002, 1524 -
3c
Braga AL.Appelt HR.Silveira CC.Wessjohann LA.Schneider PH. Tetrahedron 2002, 58: 10413 -
3d
Kamble RM.Singh VK. Tetrahedron Lett. 2003, 44: 5347 -
3e
Makita N.Hoshino Y.Yamamoto H. Org. Biomol. Chem. 2004, 2: 3312 -
3f
Xu Z.Chen C.Xu J.Miao M.Yan W.Wang R. Org. Lett. 2004, 6: 1193 -
3g
Fang T.Du D.-M.Lu S.-F.Xu J. Org. Lett. 2005, 7: 2081 -
3h
Emmerson DPG.Hems WP.Davis BG. Org. Lett. 2006, 8: 207 - 4
Anand NK.Carreira EM. J. Am. Chem. Soc. 2001, 123: 9687 - 5
Xu M.-H.Pu L. Org. Lett. 2002, 4: 4555 -
6a
Lu G.Li X.Zhou Z.Chan WL.Chan ASC. Tetrahedron: Asymmetry 2001, 12: 2147 -
6b
Dahmen S. Org. Lett. 2004, 6: 2113 -
6c
Zhu M.Li X.-Z.Yuan K.Cao B.-X.Hou X.-L. Tetrahedron: Asymmetry 2004, 15: 219 -
6d
Kang Y.-F.Liu L.Wang R.Yan W.-J.Zhou Y.-F. Tetrahedron: Asymmetry 2004, 15: 3155 -
6e
Yamashita M.Yamada K.-I.Tomioka K. Adv. Synth. Catal. 2005, 347: 1649 -
6f
Mao J.Wan B.Wu F.Lu S. Chirality 2005, 17: 243 -
6g
Thoniyot CCP.Hirayama LC.Romano T.Singaram B. Tetrahedron: Asymmetry 2005, 16: 1829 -
6h
Pizzuti MG.Superchi S. Tetrahedron: Asymmetry 2005, 16: 2263 - 7
Trost BM.Weiss AH.Wangelin AJ. J. Am. Chem. Soc. 2006, 128: 8 -
8a
Liu G.Li X.Chan WL.Chan ASC. Chem. Commun. 2002, 172 -
8b
Li X.Lu G.Kwok WH.Chan ASC. J. Am. Chem. Soc. 2002, 124: 12636 -
9a
Moore D.Pu L. Org. Lett. 2002, 4: 1855 -
9b
Gao G.Moore D.Xie R.-G.Pu L. Org. Lett. 2002, 4: 4143 -
9c
Liu L.Pu L. Tetrahedron 2004, 60: 7427 - 10
Liu Q.-Z.Xie N.-S.Luo Z.-B.Cui X.Cun L.-F.Gong L.-Z.Mi A.-Q.Jiang Y.-C. J. Org. Chem. 2003, 68: 7921 - 11
Xu Z.Wang R.Xu J.Da C.-S.Yan W.-J.Chen C. Angew. Chem. Int. Ed. 2003, 42: 5747 - 12
Gao G.Wang Q.Yu X.-Q.Xie R.-G.Pu L. Angew. Chem. Int. Ed. 2006, 45: 122 - 13
Takita R.Yakura K.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13760 -
15a
Hartung J.Drees S.Greb M.Schimdt P.Svoboda I.Fuess B.Murso A.Stalke D. Eur. J. Org. Chem. 2003, 2388 -
15b
Blum SA.Bergman RC.Ellman JA. J. Org. Chem. 2003, 68: 150
References and Notes
General Procedures for Synthesis of Oxovanadium(V) Complexes 3a-h.
To a solution of a Schiff base (1.00 mmol) in 10 mL appropriate alcohol, VO(Oi-Pr)3 (0.24 mL, 1.0 mmol) was added at r.t. The mixture was stirred for 1 h and the solvent was removed under reduced pressure to give a quantitative yield of the product. All compounds were characterized by 1H NMR and 13C NMR spectroscopy and by elemental analyses. Two sets of NMR resonances are observed for each complex due to the presence of two isomers in solution. Spectroscopic data of complexes 3c and 3g as examples are listed in the following. The two isomers are designated as major and minor based on relative intensities of resonances. 1H NMR spectra for the two isomers in the phenyl region are overlapped and resonances of the minor are included in data of the major.
Complex 3c: dark green solid. 1H NMR (400 MHz, CDCl3): δ (major, 69%) = 7.56 (s, 1 H, CH=N), 7.50-6.76 (m, Ph), 6.43 (d, J = 3.2 Hz, 1 H, CHO), 5.34-5.26 (m, 2 H, OCH
2
), 4.20 (d, J = 6.0 Hz, 1 H, CHN), 3.61 (dd, J = 7.6, 9.2 Hz, 1 H, CH
A
H
B
Ph), 2.62 (dd, J = 2.0, 9.0 Hz, 1 H, CH
A
H
B
Ph), 1.59 (t, J = 5.2 Hz, 3 H, CH
3
) ppm; δ (minor, 31%) = 7.57 (s, 1 H, CH=N), 6.65 (d, J = 3.6 Hz, 1 H, CHO), 5.40-5.36 (m, 2 H, OCH
2
), 4.53 (d, J = 7.2 Hz, 1 H, CHN), 2.57 (dd, J = 2.4, 9.2 Hz, 1 H, CH
A
H
B
Ph), 2.47 (dd, J = 7.6, 9.2 Hz, 1 H, CH
A
H
B
Ph), 1.69 (t, J = 4.8 Hz, 3 H, CH
3
) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ = 163.26, 162.86, 162.71, 140.50, 137.86, 137.11, 135.82, 135.57, 132.45, 132.35, 130.19, 130.14, 128.70, 128.60, 128.55, 128.47, 127.62, 127.43, 127.01, 126.77, 126.67, 126.05, 125.95, 124.98, 119.78, 119.51, 118.84, 93.35, 90.92, 87.19, 86.39, 84.50, 79.54, 79.07, 78.62, 42.02, 36.23, 36.11, 25.58, 19.13, 17.97, 17.74. Anal. Calcd for C24H24NO4V (%): C, 65.31; H, 5.48; N, 3.17. Found: C, 65.66; H, 5.08; N, 3.57.
Complex 3g: brown solid. 1H NMR (400 MHz, CDCl3): δ (major, 71%) = 7.45-6.77 (m, CH=N, Ph), 4.89 (d, J = 4.0 Hz, 1 H, CHN), 4.85 (ddd, J = 6.8, 11.4, 28.0 Hz, 2 H, OCH
2), 4.05 (d, J = 12.0 Hz, 1 H, CHO), 3.83 (dd, J = 12.4, 12.4 Hz, 1 H, CH
A
H
B
Ph), 3.43 (d, J = 13.2 Hz, 1 H, CH
A
H
B
Ph), 2.16-2.06 (m, 1 H, CH2
CH), 1.18 (s, 9 H, t-Bu), 1.03 [d, J = 6.8 Hz, 6H, CH(CH
3
)2] ppm; δ (minor, 29%) = 5.24 (d, J = 4.0 Hz, 1 H, CHN), 5.05 (ddd, J = 6.8, 11.0, 30.8 Hz, 2 H, OCH
2), 4.32 (d, J = 11.6 Hz, 1 H, CHO), 3.28 (d, J = 14.0 Hz, 1 H, CH
A
H
B
Ph), 2.62 (dd, J = 12.4, 12.4 Hz, 1 H, CH
A
H
B
Ph), 2.40-2.22 (m, 1 H, CH2CH), 1.21 (s, 9 H, t-Bu), 1.12 [d, J = 6.8 Hz, 6 H, CH(CH
3
)2] ppm. 13C{1H} NMR (100 MHz, CDCl3): δ = 165.18, 163.73, 161.93, 161.78, 137.98, 137.17, 135.37, 135.08, 132.25, 132.15, 130.20, 130.03, 128.44, 128.38, 126.67, 126.60, 120.01, 119.34, 119.04, 118.97, 118.64, 118.57, 98.05, 94.60, 89.84, 88.71, 83.31, 78.13, 36.77, 36.31, 35.81, 31.91, 31.60, 27.55, 27.12, 19.47, 19.41, 18.79. Anal. Calcd for C24H32NO4V (%): C, 64.13; H, 7.18; N, 3.12. Found: C, 63.72; H, 7.42; N, 3.59.