References and Notes
1a
Sugiura T.
Kondo S.
Sukagawa A.
Nakane S.
Shinoda A.
Itoh K.
Yamashita A.
Waku K.
Biochem. Biophys. Res. Commun.
1995,
215:
89
1b
Sugiura T.
Kondo S.
Kishimoto S.
Miyashita T.
Nakane S.
Kodaka T.
Suhara Y.
Takayama H.
Waku K.
J. Biol. Chem.
2000,
275:
605
1c
Sugiura T.
Waku K.
Chem. Phys. Lipids
2000,
108:
89
1d
Sugiura T.
Yoshinaga N.
Waku K.
Neurosci. Lett.
2001,
297:
175
1e
Di Marzo V.
Melck D.
De Petrocellis L.
Bisogno T.
Prostag. Other Lipid Mediat.
2000,
61:
43
2
Small DM.
Ann. Rev. Nutr.
1991,
11:
413
3
Iwasaki Y.
Yamane T.
J. Mol. Catal. B: Enzym.
2000,
10:
129
4a
Mergen F.
Lambert DM.
Saraiva JCG.
Poupaert JH.
Dumont P.
J. Pharm. Pharmacol.
1991,
43:
815
4b
Deverre JR.
Loiseau P.
Puisieux F.
Gayral P.
Letourneux Y.
Couvreur P.
Benoit JP.
Arzneim.-Forsch./Drug Res.
1992,
42:
1153
4c
Lambert DM.
Neuvens L.
Mergen F.
Gallez B.
Poupaert JH.
Ghyselburton J.
Maloteaux JM.
Dumont P.
J. Pharm. Pharmacol.
1993,
45:
186
4d
Garzon-Aburbeh A.
Poupaert JH.
Claesen M.
Dumont P.
Atassi G.
J. Med. Chem.
1983,
26:
1200
4e
Paris GY.
Garmaise DL.
Cimon DG.
Swett L.
Carter GW.
Young P.
J. Med. Chem.
1979,
22:
683
5
Suhara Y.
Takayama H.
Nakane S.
Miyashita T.
Waku K.
Sugiura T.
Chem. Pharm. Bull.
2000,
48:
903
6
Suhara Y.
Nakane S.
Arai S.
Takayama H.
Waku K.
Ishima Y.
Sugiura T.
Bioorg. Med. Chem. Lett.
2001,
11:
1985
7
Razdan RK.
Mahadevan A.
Chem. Phys. Lipids
2002,
121:
21
8
Houte H.
Partali V.
Sliwka H.-R.
Quartey EGK.
Chem. Phys. Lipids
2000,
105:
105
9
Innis SM.
Dyer R.
Nelson CM.
Lipids
1994,
29:
541
10
Prades J.
Funari SS.
Escriba PV.
Barcelo F.
J. Lipid Res.
2003,
44:
1720
11
Burchardt A.
Takahashi T.
Takeuchi Y.
Haufe G.
J. Org. Chem.
2001,
66:
2078
12
Strawn LM.
Martell RE.
Simpson RU.
Leach KL.
Counsell RE.
J. Med. Chem.
1989,
32:
2104
13
Weichert JP.
Longino MA.
Bakan DA.
Spigarelli MG.
Chou T.
Schwendner SW.
Counsell RE.
J. Med. Chem.
1995,
38:
636
14a
Han LN.
Razdan RK.
Tetrahedron Lett.
1999,
40:
1631
14b
Cartoni A.
Margonelli A.
Angelini G.
Finazzi-Agro A.
Maccarrone M.
Tetrahedron Lett.
2004,
45:
2723
14c
Seltzman HH.
Fleming DN.
Hawkins GD.
Carroll FI.
Tetrahedron Lett.
2000,
41:
3589
15
Schmid PC.
Schwartz KD.
Smith CN.
Krebsbach RJ.
Berdyshev EV.
Schmid HHO.
Chem. Phys. Lipids
2000,
104:
185
16
Rouzer CA.
Ghebreselasie K.
Marnett LJ.
Chem. Phys. Lipids
2002,
119:
69
17a
Martin JB.
J. Am. Chem. Soc.
1953,
75:
5483
17b
Serdarevich B.
J. Am. Oil Chem. Soc.
1967,
44:
381
17c
Mattson FH.
Volpenhein RA.
J. Lipid Res.
1962,
3:
281
17d
Kodali DR.
Tercyak A.
Fahey DA.
Small DM.
Chem. Phys. Lipids
1990,
52:
163
18a
Martin JD.
Palazon JM.
Perez C.
Ravelo JL.
Pure Appl. Chem.
1986,
58:
395
18b
Martin JD.
Perez C.
Ravelo JL.
J. Am. Chem. Soc.
1986,
108:
7801
18c
vanDeenen LM.
deHaas GH.
Biochim. Biophys. Acta
1963,
70:
538
19
Righi G.
Bonini C.
Recent Res. Dev. Org. Chem.
1999,
3:
343
20
Brachwitz H.
Langen P.
Dube G.
Schildt J.
Paltauf F.
Hermetter A.
Chem. Phys. Lipids
1990,
54:
89
21a
Bonini C.
Righi G.
Synthesis
1994,
225
21b
Azzena F.
Calvani F.
Crotti P.
Gardelli C.
Macchia F.
Pineschi M.
Tetrahedron
1995,
51:
10601
21c
Bajwa JS.
Anderson RC.
Tetrahedron Lett.
1991,
32:
3021
21d
Righi G.
Pescatore G.
Bonadies F.
Bonini C.
Tetrahedron
2001,
57:
5649
21e
Kotsuki H.
Shimanouchi T.
Ohshima R.
Fujiwara S.
Tetrahedron
1998,
54:
2709
21f
Bartas-Yacoubou J.-M.
Maduike N.
Kyere S.
Doan L.
Whalen DL.
Tetrahedron Lett.
2002,
43:
3781
22a
Onaka M.
Sugita K.
Takeuchi H.
Izumi Y.
J. Chem. Soc., Chem. Commun.
1988,
1173
22b
Chini M.
Crotti P.
Gardelli C.
Macchia F.
Tetrahedron
1992,
48:
3805
23a
Gao L.-X.
Murai A.
Chem. Lett.
1989,
357
23b
Gao L.-X.
Murai A.
Chem. Lett.
1991,
1503
24a
Konaklieva MI.
Dahl ML.
Turos E.
Tetrahedron Lett.
1992,
33:
7093
24b
Sharghi H.
Eskandari MM.
Tetrahedron
2003,
59:
8509
24c
Sharghi H.
Eskandari MM.
Ghavami R.
J. Mol. Catal. A: Chem.
2004,
215:
55
24d
Sharghi H.
Eskandari MM.
Synthesis
2002,
1519
24e
Soroka M.
Goldeman W.
Malysa P.
Stochaj M.
Synthesis
2003,
2341
25
Parfenov EA.
Serebrennikova GA.
Preobrazhenskii NA.
Zh. Org. Khim.
1967,
3:
1951
26a
Sharpless KB.
Teranishi AY.
Backvall JE.
J. Am. Chem. Soc.
1977,
99:
3120
26b
Backvall JE.
Young MW.
Sharpless KB.
Tetrahedron Lett.
1977,
18:
3523
27
Iqbal J.
Amin Khan M.
Srivastava RR.
Tetrahedron Lett.
1988,
29:
4985
28
Shibata I.
Baba A.
Matsuda H.
Tetrahedron Lett.
1986,
27:
3021
29
Iranpoor N.
Zeynizadeh B.
J. Chem. Res., Synop.
1998,
582
30
Oriyama T.
Ishiwata A.
Hori Y.
Yatabe T.
Hasumi N.
Koga G.
Synlett
1995,
1004
31
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2002,
43:
1759
32
Stamatov SD.
Stawinski J.
Tetrahedron
2005,
61:
3659
33
Stamatov SD.
Stawinski J.
Bioorg. Med. Chem. Lett.
2006,
16:
3388
34
Stamatov SD.
Stawinski J.
Synlett
2005,
2587
35 In separate experiments we found that reaction of 1 with TFAA and tetrabutylammonium halides or with TFAA and TMSBr in the presence of pyridine, occurred without acyl migration and involved a nucleophilic opening of the oxirane ring with halide ion, facilitated by electrophilic catalysis exerted by TFAA
36
General Procedure for the Synthesis of 1-Trifluoro-acetyl-2-acyl-3-haloglycerols 3-6 (Step A).
(S)-(+)-2-(Oleoyloxymethyl)oxirane (1) {[α]D
20 +13.89 (c 5.66, CHCl3)} and (rac)-(±)-2-(2,4,6-trimethylbenzoyloxy-methyl)oxirane (2) were obtained by direct acylation of chiral or racemic glycidols as described elsewhere.
[32]
The R
f
values refer to mobility on a silica gel plates using the solvent system: pentane-toluene-EtOAc = 40:50:10 (v/v/v).
To a solution of the starting substrate 1, 2 (1.00 mmol) in CH2Cl2 (3.0 mL), a mixture of TFAA (4.00-5.00 mmol) and trimethylsilyl halide (1.20-4.00 mmol), prepared in the same solvent (3.0 mL), was added at -20 °C and the reaction system was kept under argon at r.t. for 2-5 h. Then, CH2Cl2 and volatile reaction components were evaporated in vacuo, the residue was taken in toluene (5.0 mL) and passed through a silica gel pad (ca. 5 g) prepared in the same solvent. The support was washed with toluene (ca. 100 mL), fractions containing the target compound were combined, the eluent was removed under reduced pressure, and the rest was kept under high vacuum at r.t. for 2-3 h to afford the rearranged 2-O-acylated halohydrin 3-6 (purity >99%, 1H NMR spectroscopy).
1-Trifluoroacetyl-2-oleoyl-3-chloro-rac-glycerol (3): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSCl (0.505 mL, 4.00 mmol) for 5 h. Yield: 0.428 g (91%, colorless oil); R
f
= 0.68. Anal. Calcd (%) for C23H38ClF3O4 (470.99): C, 58.65; H, 8.13; Cl, 7.53. Found: C, 58.72; H, 8.10; Cl, 7.51.
1-Trifluoroacetyl-2-oleoyl-3-bromo-rac-glycerol (4): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSBr (0.259 mL, 2.00 mmol) for 3 h. Yield: 0.479 g (93%, colorless oil); R
f
= 0.67. Anal. Calcd (%) for C23H38BrF3O4 (515.44): C, 53.59; H, 7.43; Br, 15.50. Found: C, 53.56; H, 7.41; Br, 15.51.
1-Trifluoroacetyl-2-oleoyl-3-iodo-rac-glycerol (5): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.695 mL, 5.00 mmol) and TMSI (0.163 mL, 1.20 mmol) for 2 h. Yield: 0.534 g (95%, colorless oil); R
f
= 0.66. Anal. Calcd (%) for C23H38F3IO4 (562.44): C, 49.11; H, 6.81; I, 22.56. Found: C, 49.18; H, 6.78; I, 22.51.
1-Trifluoroacetyl-2-(2,4,6-trimethylbenzoyl)-3-bromo-rac-glycerol (6): obtained from 2 (0.220 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSBr (0.259 mL, 2.00 mmol) for 3 h. Yield: 0.353 g (89%, colorless oil); R
f
= 0.71. Anal. Calcd (%) for C15H16BrF3O4 (397.18): C, 45.36; H, 4.06; Br, 20.12. Found: C, 45.41; H, 4.01; Br, 20.18.
37
General Procedure for the Synthesis of 2-Acyl-3-haloglycerols 7-10 (Step B).
To a solution of trifluoroacetyl halohydrin 3-6 (1.00 mmol) in pentane-CH2Cl2 (3:1, v/v, 5.0 mL), a mixture of pyridine (0.8 mL, 10 mmol) and MeOH (10.1 mL, 250 mmol) in the same solvents (5.0 mL) was added at 0 °C and the reaction system was left at r.t. for 20 min. Solvents were evaporated under reduced pressure (bath temp. 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to give the deprotected haloalkanol 7-10 (purity >99%, 1H NMR spectroscopy).
2-Oleoyl-3-chloro-rac-glycerol (7): obtained from 3 (0.471 g, 1.00 mmol). Yield: 0.374 g (100%, colorless oil); R
f
= 0.25. Anal. Calcd (%) for C21H39ClO3 (374.98): C, 67.26; H, 10.48; Cl, 9.45. Found: C, 67.22; H, 10.51; Cl, 9.50.
2-Oleoyl-3-bromo-rac-glycerol (8): obtained from 4 (0.515 g, 1.00 mmol). Yield: 0.419 g (100%, colorless oil); R
f
= 0.23. Anal. Calcd (%) for C21H39BrO3 (419.44): C, 60.13; H, 9.37; Br, 19.05. Found: C, 60.08; H, 9.40; Br, 19.00.
2-Oleoyl-3-iodo-rac-glycerol (9): obtained from 5 (0.562 g, 1.00 mmol). Yield: 0.466 g (100%, yellowish oil); R
f
= 0.34. Anal. Calcd (%) for C21H39IO3 (466.44): C, 54.07; H, 8.43; I, 27.21. Found: C, 54.13; H, 8.40; I, 27.24.
2-(2,4,6-Trimethylbenzoyl)-3-bromo-rac-glycerol (10): obtained from 6 (0.397 g, 1.00 mmol). Yield: 0.300 g (100%, colorless oil); R
f
= 0.24. Anal. Calcd (%) for C13H17BrO3 (301.18): C, 51.84; H, 5.69; Br, 26.53. Found: C, 51.79; H, 5.72; Br, 26.57.