Subscribe to RSS
DOI: 10.1055/s-2006-948206
Regioselective, Haloacylating Cleavage of an Oxirane System Mediated by Trifluoroacetic Anhydride/Trimethylsilyl Halides: An Efficient Entry to 2-Acyl-3-haloglycerols
Publication History
Publication Date:
24 August 2006 (online)
Abstract
Glycidyl esters in the presence of trifluoroacetic anhydride (TFAA) and trimethylsilyl halides (TMSX), undergo a regioselective opening of the oxirane system with a subsequent migration of the acyl group to afford 1-trifluoroacetyl-2-acyl-3-haloglycerols. From these, the corresponding 2-acyl-3-haloglycerols can be obtained quantitatively and in high purity (>99%) without chromatographic purification.
Key words
glycidyl esters - trimethylsilyl halides - trifluoroacetic anhydride - 2-O-acylated 1,3-terminal halohydrins - 2-acylglycerol isosters
-
1a
Sugiura T.Kondo S.Sukagawa A.Nakane S.Shinoda A.Itoh K.Yamashita A.Waku K. Biochem. Biophys. Res. Commun. 1995, 215: 89 -
1b
Sugiura T.Kondo S.Kishimoto S.Miyashita T.Nakane S.Kodaka T.Suhara Y.Takayama H.Waku K. J. Biol. Chem. 2000, 275: 605 -
1c
Sugiura T.Waku K. Chem. Phys. Lipids 2000, 108: 89 -
1d
Sugiura T.Yoshinaga N.Waku K. Neurosci. Lett. 2001, 297: 175 -
1e
Di Marzo V.Melck D.De Petrocellis L.Bisogno T. Prostag. Other Lipid Mediat. 2000, 61: 43 - 2
Small DM. Ann. Rev. Nutr. 1991, 11: 413 - 3
Iwasaki Y.Yamane T. J. Mol. Catal. B: Enzym. 2000, 10: 129 -
4a
Mergen F.Lambert DM.Saraiva JCG.Poupaert JH.Dumont P. J. Pharm. Pharmacol. 1991, 43: 815 -
4b
Deverre JR.Loiseau P.Puisieux F.Gayral P.Letourneux Y.Couvreur P.Benoit JP. Arzneim.-Forsch./Drug Res. 1992, 42: 1153 -
4c
Lambert DM.Neuvens L.Mergen F.Gallez B.Poupaert JH.Ghyselburton J.Maloteaux JM.Dumont P. J. Pharm. Pharmacol. 1993, 45: 186 -
4d
Garzon-Aburbeh A.Poupaert JH.Claesen M.Dumont P.Atassi G. J. Med. Chem. 1983, 26: 1200 -
4e
Paris GY.Garmaise DL.Cimon DG.Swett L.Carter GW.Young P. J. Med. Chem. 1979, 22: 683 - 5
Suhara Y.Takayama H.Nakane S.Miyashita T.Waku K.Sugiura T. Chem. Pharm. Bull. 2000, 48: 903 - 6
Suhara Y.Nakane S.Arai S.Takayama H.Waku K.Ishima Y.Sugiura T. Bioorg. Med. Chem. Lett. 2001, 11: 1985 - 7
Razdan RK.Mahadevan A. Chem. Phys. Lipids 2002, 121: 21 - 8
Houte H.Partali V.Sliwka H.-R.Quartey EGK. Chem. Phys. Lipids 2000, 105: 105 - 9
Innis SM.Dyer R.Nelson CM. Lipids 1994, 29: 541 - 10
Prades J.Funari SS.Escriba PV.Barcelo F. J. Lipid Res. 2003, 44: 1720 - 11
Burchardt A.Takahashi T.Takeuchi Y.Haufe G. J. Org. Chem. 2001, 66: 2078 - 12
Strawn LM.Martell RE.Simpson RU.Leach KL.Counsell RE. J. Med. Chem. 1989, 32: 2104 - 13
Weichert JP.Longino MA.Bakan DA.Spigarelli MG.Chou T.Schwendner SW.Counsell RE. J. Med. Chem. 1995, 38: 636 -
14a
Han LN.Razdan RK. Tetrahedron Lett. 1999, 40: 1631 -
14b
Cartoni A.Margonelli A.Angelini G.Finazzi-Agro A.Maccarrone M. Tetrahedron Lett. 2004, 45: 2723 -
14c
Seltzman HH.Fleming DN.Hawkins GD.Carroll FI. Tetrahedron Lett. 2000, 41: 3589 - 15
Schmid PC.Schwartz KD.Smith CN.Krebsbach RJ.Berdyshev EV.Schmid HHO. Chem. Phys. Lipids 2000, 104: 185 - 16
Rouzer CA.Ghebreselasie K.Marnett LJ. Chem. Phys. Lipids 2002, 119: 69 -
17a
Martin JB. J. Am. Chem. Soc. 1953, 75: 5483 -
17b
Serdarevich B. J. Am. Oil Chem. Soc. 1967, 44: 381 -
17c
Mattson FH.Volpenhein RA. J. Lipid Res. 1962, 3: 281 -
17d
Kodali DR.Tercyak A.Fahey DA.Small DM. Chem. Phys. Lipids 1990, 52: 163 -
18a
Martin JD.Palazon JM.Perez C.Ravelo JL. Pure Appl. Chem. 1986, 58: 395 -
18b
Martin JD.Perez C.Ravelo JL. J. Am. Chem. Soc. 1986, 108: 7801 -
18c
vanDeenen LM.deHaas GH. Biochim. Biophys. Acta 1963, 70: 538 - 19
Righi G.Bonini C. Recent Res. Dev. Org. Chem. 1999, 3: 343 - 20
Brachwitz H.Langen P.Dube G.Schildt J.Paltauf F.Hermetter A. Chem. Phys. Lipids 1990, 54: 89 -
21a
Bonini C.Righi G. Synthesis 1994, 225 -
21b
Azzena F.Calvani F.Crotti P.Gardelli C.Macchia F.Pineschi M. Tetrahedron 1995, 51: 10601 -
21c
Bajwa JS.Anderson RC. Tetrahedron Lett. 1991, 32: 3021 -
21d
Righi G.Pescatore G.Bonadies F.Bonini C. Tetrahedron 2001, 57: 5649 -
21e
Kotsuki H.Shimanouchi T.Ohshima R.Fujiwara S. Tetrahedron 1998, 54: 2709 -
21f
Bartas-Yacoubou J.-M.Maduike N.Kyere S.Doan L.Whalen DL. Tetrahedron Lett. 2002, 43: 3781 -
22a
Onaka M.Sugita K.Takeuchi H.Izumi Y. J. Chem. Soc., Chem. Commun. 1988, 1173 -
22b
Chini M.Crotti P.Gardelli C.Macchia F. Tetrahedron 1992, 48: 3805 -
23a
Gao L.-X.Murai A. Chem. Lett. 1989, 357 -
23b
Gao L.-X.Murai A. Chem. Lett. 1991, 1503 -
24a
Konaklieva MI.Dahl ML.Turos E. Tetrahedron Lett. 1992, 33: 7093 -
24b
Sharghi H.Eskandari MM. Tetrahedron 2003, 59: 8509 -
24c
Sharghi H.Eskandari MM.Ghavami R. J. Mol. Catal. A: Chem. 2004, 215: 55 -
24d
Sharghi H.Eskandari MM. Synthesis 2002, 1519 -
24e
Soroka M.Goldeman W.Malysa P.Stochaj M. Synthesis 2003, 2341 - 25
Parfenov EA.Serebrennikova GA.Preobrazhenskii NA. Zh. Org. Khim. 1967, 3: 1951 -
26a
Sharpless KB.Teranishi AY.Backvall JE. J. Am. Chem. Soc. 1977, 99: 3120 -
26b
Backvall JE.Young MW.Sharpless KB. Tetrahedron Lett. 1977, 18: 3523 - 27
Iqbal J.Amin Khan M.Srivastava RR. Tetrahedron Lett. 1988, 29: 4985 - 28
Shibata I.Baba A.Matsuda H. Tetrahedron Lett. 1986, 27: 3021 - 29
Iranpoor N.Zeynizadeh B. J. Chem. Res., Synop. 1998, 582 - 30
Oriyama T.Ishiwata A.Hori Y.Yatabe T.Hasumi N.Koga G. Synlett 1995, 1004 - 31
Stamatov SD.Stawinski J. Tetrahedron Lett. 2002, 43: 1759 - 32
Stamatov SD.Stawinski J. Tetrahedron 2005, 61: 3659 - 33
Stamatov SD.Stawinski J. Bioorg. Med. Chem. Lett. 2006, 16: 3388 - 34
Stamatov SD.Stawinski J. Synlett 2005, 2587 - 35 In separate experiments we found that reaction of 1 with TFAA and tetrabutylammonium halides or with TFAA and TMSBr in the presence of pyridine, occurred without acyl migration and involved a nucleophilic opening of the oxirane ring with halide ion, facilitated by electrophilic catalysis exerted by TFAA
References and Notes
General Procedure for the Synthesis of 1-Trifluoro-acetyl-2-acyl-3-haloglycerols 3-6 (Step A).
(S)-(+)-2-(Oleoyloxymethyl)oxirane (1) {[α]D
20 +13.89 (c 5.66, CHCl3)} and (rac)-(±)-2-(2,4,6-trimethylbenzoyloxy-methyl)oxirane (2) were obtained by direct acylation of chiral or racemic glycidols as described elsewhere.
[32]
The R
f
values refer to mobility on a silica gel plates using the solvent system: pentane-toluene-EtOAc = 40:50:10 (v/v/v).
To a solution of the starting substrate 1, 2 (1.00 mmol) in CH2Cl2 (3.0 mL), a mixture of TFAA (4.00-5.00 mmol) and trimethylsilyl halide (1.20-4.00 mmol), prepared in the same solvent (3.0 mL), was added at -20 °C and the reaction system was kept under argon at r.t. for 2-5 h. Then, CH2Cl2 and volatile reaction components were evaporated in vacuo, the residue was taken in toluene (5.0 mL) and passed through a silica gel pad (ca. 5 g) prepared in the same solvent. The support was washed with toluene (ca. 100 mL), fractions containing the target compound were combined, the eluent was removed under reduced pressure, and the rest was kept under high vacuum at r.t. for 2-3 h to afford the rearranged 2-O-acylated halohydrin 3-6 (purity >99%, 1H NMR spectroscopy).
1-Trifluoroacetyl-2-oleoyl-3-chloro-rac-glycerol (3): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSCl (0.505 mL, 4.00 mmol) for 5 h. Yield: 0.428 g (91%, colorless oil); R
f
= 0.68. Anal. Calcd (%) for C23H38ClF3O4 (470.99): C, 58.65; H, 8.13; Cl, 7.53. Found: C, 58.72; H, 8.10; Cl, 7.51.
1-Trifluoroacetyl-2-oleoyl-3-bromo-rac-glycerol (4): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSBr (0.259 mL, 2.00 mmol) for 3 h. Yield: 0.479 g (93%, colorless oil); R
f
= 0.67. Anal. Calcd (%) for C23H38BrF3O4 (515.44): C, 53.59; H, 7.43; Br, 15.50. Found: C, 53.56; H, 7.41; Br, 15.51.
1-Trifluoroacetyl-2-oleoyl-3-iodo-rac-glycerol (5): obtained from 1 (0.338 g, 1.00 mmol), TFAA (0.695 mL, 5.00 mmol) and TMSI (0.163 mL, 1.20 mmol) for 2 h. Yield: 0.534 g (95%, colorless oil); R
f
= 0.66. Anal. Calcd (%) for C23H38F3IO4 (562.44): C, 49.11; H, 6.81; I, 22.56. Found: C, 49.18; H, 6.78; I, 22.51.
1-Trifluoroacetyl-2-(2,4,6-trimethylbenzoyl)-3-bromo-rac-glycerol (6): obtained from 2 (0.220 g, 1.00 mmol), TFAA (0.556 mL, 4.00 mmol) and TMSBr (0.259 mL, 2.00 mmol) for 3 h. Yield: 0.353 g (89%, colorless oil); R
f
= 0.71. Anal. Calcd (%) for C15H16BrF3O4 (397.18): C, 45.36; H, 4.06; Br, 20.12. Found: C, 45.41; H, 4.01; Br, 20.18.
General Procedure for the Synthesis of 2-Acyl-3-haloglycerols 7-10 (Step B).
To a solution of trifluoroacetyl halohydrin 3-6 (1.00 mmol) in pentane-CH2Cl2 (3:1, v/v, 5.0 mL), a mixture of pyridine (0.8 mL, 10 mmol) and MeOH (10.1 mL, 250 mmol) in the same solvents (5.0 mL) was added at 0 °C and the reaction system was left at r.t. for 20 min. Solvents were evaporated under reduced pressure (bath temp. 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to give the deprotected haloalkanol 7-10 (purity >99%, 1H NMR spectroscopy).
2-Oleoyl-3-chloro-rac-glycerol (7): obtained from 3 (0.471 g, 1.00 mmol). Yield: 0.374 g (100%, colorless oil); R
f
= 0.25. Anal. Calcd (%) for C21H39ClO3 (374.98): C, 67.26; H, 10.48; Cl, 9.45. Found: C, 67.22; H, 10.51; Cl, 9.50.
2-Oleoyl-3-bromo-rac-glycerol (8): obtained from 4 (0.515 g, 1.00 mmol). Yield: 0.419 g (100%, colorless oil); R
f
= 0.23. Anal. Calcd (%) for C21H39BrO3 (419.44): C, 60.13; H, 9.37; Br, 19.05. Found: C, 60.08; H, 9.40; Br, 19.00.
2-Oleoyl-3-iodo-rac-glycerol (9): obtained from 5 (0.562 g, 1.00 mmol). Yield: 0.466 g (100%, yellowish oil); R
f
= 0.34. Anal. Calcd (%) for C21H39IO3 (466.44): C, 54.07; H, 8.43; I, 27.21. Found: C, 54.13; H, 8.40; I, 27.24.
2-(2,4,6-Trimethylbenzoyl)-3-bromo-rac-glycerol (10): obtained from 6 (0.397 g, 1.00 mmol). Yield: 0.300 g (100%, colorless oil); R
f
= 0.24. Anal. Calcd (%) for C13H17BrO3 (301.18): C, 51.84; H, 5.69; Br, 26.53. Found: C, 51.79; H, 5.72; Br, 26.57.