Subscribe to RSS
DOI: 10.1055/s-2006-949622
Syntheses of Highly Substituted Furan and Pyrrole Derivatives via Lithiated 3-Aryl-1-methoxyallenes: Application to the Synthesis of Codonopsinine
Publication History
Publication Date:
08 September 2006 (online)
Abstract
Lithiated 1-methoxy-3-phenylallenes were generated in situ from a phenyl-substituted propargylic ether. They smoothly combined with aldehydes, ketones, or imines to give allenyl adducts, which cyclized to highly substituted heterocycles either under basic conditions or with silver nitrate assistance. Analogously, a dihydropyrrole derivative was obtained by the addition of anisyl-substituted lithiated methoxyallene derivative to an N-tosyl imine and subsequent cyclization of the intermediate. The two diastereomers obtained were subsequently transformed into the alkaloid (±)-codonopsinine and one of its epimers. The key steps of these sequences are highly diastereoselective hydroborations of silyl enol ethers quantitatively leading to hydroxylated intermediates.
Key words
methoxyallene - organo lithium compounds - pyrroles - hydroboration - alkaloids
- Reviews:
-
1a
Zimmer R.Reissig H.-U. Donor-Substituted Allenes, In Modern Allene Chemistry Vol. 1:Krause N.Hashmi ASK. Wiley-VCH; Weinheim: 2004. p.425-492 -
1b
Zimmer R. Synthesis 1993, 165 -
1c
Zimmer R.Khan FA. J. Prakt. Chem. 1996, 338: 92 - 2
Hoff S.Brandsma L.Arens JF. Recl. Trav. Chim. Pays-Bas 1968, 87: 916 -
3a
Hoff S.Brandsma L.Arens JF. Recl. Trav. Chim. Pays-Bas 1968, 87: 1179 -
3b
Hoff S.Brandsma L.Arens JF. Recl. Trav. Chim. Pays-Bas 1969, 88: 609 - 4
Nedolya NA.Brandsma L.Zinovéva VP.Trofimov BA. Russ. J. Org. Chem. 1997, 33: 80 - Selected references:
-
5a
Hormuth S.Reissig H.-U. J. Org. Chem. 1994, 59: 67 -
5b
Okala Amombo MG.Hausherr A.Reissig H.-U. Synlett 1999, 1871 -
5c
Pulz R.Al-Harrasi A.Reissig H.-U. Org. Lett. 2002, 4: 2353 -
5d
Flögel O.Okala Amombo MG.Reissig H.-U.Zahn G.Brüdgam I.Hartl H. Chem. Eur. J. 2003, 9: 1405 -
5e
Kaden S.Brockmann M.Reissig H.-U. Helv. Chim. Acta 2005, 88: 1826 -
5f
Helms M.Schade W.Pulz R.Watanabe T.Al-Harrasi A.Fiera L.Hlobilová I.Zahn G.Reissig H.-U. Eur. J. Org. Chem. 2005, 1003 - 6 For early attempts to generate this type of allene, see:
Leroux Y.Mantione R. J. Organomet. Chem. 1971, 30: 295 - For selected recent syntheses of 2,5-disubstituted dihydropyrroles:
-
7a
Jones AD.Knight DW.Redfern AL.Gilmore J. Tetrahedron Lett. 1999, 40: 3267 -
7b
Evans PA.Robinson JE. Org. Lett. 1999, 1: 1929 -
7c
Kagoshima A.Akiyama T. J. Am. Chem. Soc. 2000, 122: 11741 -
7d
Hausherr A. Dissertation Freie Universität Berlin; Germany: 2002. also see ref. 5b -
7e
Ma S.Jiao N. Angew. Chem. Int. Ed. 2002, 41: 4737 ; Angew. Chem. 2002, 114, 4931 -
7f
Donohoe TJ.Headley CE.Cousins RPC.Cowley A. Org. Lett. 2003, 5: 999 -
7g
Morita N.Krause N. Org. Lett. 2004, 6: 4121 -
7h
Zhu X.-F.Henry CE.Kwon O. Tetrahedron 2005, 61: 6276 -
7i
Dieter RK.Chen N.Yu H.Nice LE.Gore VK. J. Org. Chem. 2005, 70: 2109 -
7j
Ohno H.Kadoh Y.Fujii N.Tanaka T. Org. Lett. 2006, 8: 947 - For selected recent syntheses of 2,5-disubstituted dihydrofurans:
-
8a
Hoffmann-Röder A.Krause N. Org. Lett. 2001, 3: 2537 -
8b
Chen J.Song Q.Li P.Guan H.Jin X.Xi Z. Org. Lett. 2002, 4: 2269 -
8c
Ma S.Gao W. J. Org. Chem. 2002, 67: 6104 -
8d
Schultz-Fademrecht C.Zimmermann M.Fröhlich R.Hoppe D. Synlett 2003, 1969 -
8e
Berry CR.Hsung RP.Antoline JE.Petersen ME.Challeppan R.Nielson JA.
J. Org. Chem. 2005, 70: 4038 -
8f
Buzas A.Istrate F.Gagosz F. Org. Lett. 2006, 8: 1957 -
9a
Franck B.Gehrken H.-P. Angew. Chem., Int. Ed. Engl. 1980, 19: 461 ; Angew. Chem. 1980, 92, 484 -
9b
Boivin TLB. Tetrahedron 1987, 43: 3309 -
9c
Koert U.Stein M.Wagner H. Chem. Eur. J. 1997, 3: 1170 -
9d
Dondoni A.Giovannini PP.Perrone D. J. Org. Chem. 2002, 67: 7203 -
9e
Trost BM.Dudash J.Dirat O. Chem. Eur. J. 2002, 8: 259 -
9f
Cren S.Gurcha SS.Blake AJ.Besra GS.Thomas NR. Org. Biomol. Chem. 2004, 2: 2418 -
9g
Basler B.Brandes S.Spiegel A.Bach T. Top. Curr. Chem. 2005, 243: 1 - 10 Compounds such as 1 are easily prepared by Sonogashira reactions of the corresponding propargylic ethers:
Roesch SKR.Larock RC. J. Org. Chem. 2001, 66: 412 -
12a
Olsson L.-I.Claesson A. Synthesis 1979, 743 -
12b
Marshall JA.Bartley GS. J. Org. Chem. 1994, 59: 7169 -
12c
Flögel O.Reissig H.-U. Eur. J. Org. Chem. 2004, 2797 - Isolation and structural determination:
-
13a
Matkhalikova SF.Malikov VM.Yunusov SY. Khim. Prir. Soedin. 1969, 5: 606 -
13b
Matkhalikova SF.Malikov VM.Yunusov SY. Khim. Prir. Soedin. 1969, 5: 30 - Previous syntheses of this compound:
-
13c
Iida H.Yamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 1956 -
13d
Severino EA.Correia CRD. Org. Lett. 2000, 2: 3039 -
13e
Goti A.Cicchi S.Mannucci V.Cardona F.Guarna F.Merino P.Tejero T. Org. Lett. 2003, 5: 4235 -
13f
Toyao A.Tamura O.Takagi H.Ishibashi H. Synlett 2003, 35 -
13g
Haddad M.Larchevêque M. Synlett 2003, 274 -
13h
Chandrasekhar S.Jagadeshwar V.Prakash SJ. Tetrahedron Lett. 2005, 46: 3127 - 14
Heathcock CH.Blumenkopf TA.Smith KM. J. Org. Chem. 1989, 54: 1548
References and Notes
Conversion of 9 into 13; Typical Procedure
To a solution of 1-methoxy-4-(3-methoxy-1-propynyl)ben-zene (9; 1.20 g, 6.82 mmol) in Et2O (15 mL) n-BuLi (2.5 M in hexane, 2.73 mL, 6.82 mmol) was added at -78 °C and stirred for 1 h. MeOH (276 µL, 6.82 mmol) was added slowly to the mixture and the resulting solution was warmed with stirring to r.t. (0.5 h). The mixture was cooled again to -78 °C and n-BuLi (2.73 mL, 6.82 mmol) was added slowly and the resulting solution was stirred for 0.5 h. Imine 11 (1.34 g, 6.82 mmol) dissolved in Et2O (15 mL) was slowly transferred to the reaction flask by syringe. After stirring for 1.5 h at -78 °C to -20 °C, the mixture was quenched with H2O and the aqueous phase was extracted with Et2O (3 × 25 mL). The combined organic phases were washed with brine (25 mL) and dried with MgSO4. Filtration and evaporation of solvents in vacuo at r.t. afforded allenyl amine 12 (3.17 g, dr ca. 50:50), which was used for the subsequent cyclization without purification. The crude product was dissolved in anhyd MeCN (45 mL); K2CO3 (2.35 g, 17.0 mmol) followed by AgNO3 (289 mg, 1.70 mmol) were added to the solution. The resulting mixture was stirred for 16 h in the dark under argon, then filtered through a pad of celite, washed with EtOAc, and the filtrate was concentrated in vacuo at r.t. The resulting product was purified by column chromatography on silica gel (hexane-EtOAc, 4:1) to give 13 (1.98 g, 78% from 9) as a mixture of diastereomers (trans/cis 45:55). Isomers (2,5-trans)-13 (650 mg, 25%) and (2,5-cis)-13 (1.12 g, 44%) were separated by fractional crystallization.
3-Methoxy-5-(4-methoxyphenyl)-2-methyl-1-tosyl-2,5-dihydro-1
H
-pyrrole (2,5-
trans
)-13. Colorless crystals; mp 138-140 °C. IR (KBr): 3100-3000 (=CH), 3000-2840 (CH), 1670 (C=C), 1610 (CN), 1340, 1160 (RSO2N) cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.63 (d, J = 6.3 Hz, 3 H, Me), 2.31 (s, 3 H, Ts-Me), 3.62, 3.77 (2 s, 3 H each, OMe), 4.40-4.52 (m, 2 H, 2-H, 5-H), 5.50 (dd, J = 1.9, 4.7 Hz, 1 H, 4-H), 6.55-6.65, 6.90-7.00, 7.00-7.10 (3 m, 2 H, 4 H, 2 H, Ar). 13C NMR (126 MHz): δ = 20.9, 21.4 (2 q, Me), 55.4, 57.1 (2 q, OMe), 60.2 (d, C-2), 67.5 (d, C-5), 94.6 (d, C-4), 113.3, 126.7, 128.8, 129.9 (4 d, Ar), 132.1, 138.4, 141.9, 159.4 (4 s, Ar), 157.8 (s, C-3). MS (EI, 80 eV, 30 °C):
m/z (%) = 373 (30) [M]+, 358 (13) [M - CH3]+, 266 (26) [M - C7H7O]+, 218 (100) [M - C7H7SO2]+, 155 (40) [C7H7SO2]+. HRMS (EI, 80 eV, 30 °C): m/z calcd for C20H23NO4S: 373.13478; found: 373.13450. Anal. Calcd for C20H23NO4S (373.5): C, 64.32; H, 6.21; N, 3.75. Found: C, 64.29; H, 6.32; N, 3.69.
(2,5-
cis
)-13. Brownish liquid. IR (KBr): 3100-3000 (=CH), 3000-2840 (CH), 1665 (C=C), 1610 (CN), 1350, 1160 (RSO2N) cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.50 (d, J = 6.3 Hz, 3 H, Me), 2.39 (s, 3 H, Ts-Me), 3.54, 3.78 (2 s, 3 H each, OMe), 4.30-4.42 (m, 2 H, 2-H, 5-H), 5.35 (m, 1 H, 4-H), 6.80-6.90, 7.20-7.35, 7.60-7.65 (3 m, 2 H, 4 H, 2 H, Ar). 13C NMR (126 MHz): δ = 21.6, 21.8 (2 q, Me), 55.4, 57.3 (2 q, OMe), 60.3 (d, C-2), 67.2 (d, C-5), 94.0 (d, C-4), 113.8, 127.7, 128.4, 129.6 (4 d, each, Ar), 134.9, 135.5, 143.4, 159.2 (4 s, Ar), 157.3 (s, C-3). MS (EI, 80 eV, 30 °C): m/z (%) = 373 (8) [M]+, 358 (2) [M - CH3]+, 266 (11) [M - C7H7O]+, 218 (48) [M - C7H7SO2]+, 217 (100), 155 (9) [C7H7SO2]+. HRMS (EI, 80 eV, 30 °C): m/z calcd for C20H23NO4S: 373.13478; found: 373.13432.