References and Notes
-
1a
Nakasawa HT.
Goon DJW.
Muldoon WP.
Zera RT.
J. Med. Chem.
1984,
27:
591
-
1b
Samanen J.
Cash T.
Narindray D.
Brandeis E.
Adams W.
Weidemann H.
Yellin T.
J. Med. Chem.
1991,
34:
3036
-
1c
Wonacott A.
Cooke R.
Hayes FR.
Hann MM.
Jhoti H.
McMeekin P.
Mistry A.
Murray-Rust P.
Singh OMP.
J. Med. Chem.
1993,
36:
3113
-
See, for example:
-
2a
Chemistry and Biology of β-lactam Antibiotics
Vol. 1-3:
Morrin RB.
Gorman M.
Academic Press;
New York:
1982.
-
2b
The Organic Chemistry of β-Lactams
George GI.
VCH;
New York:
1993.
-
2c
The Chemistry of β-Lactams
Page MI.
Blackie Academic and Professional;
New York:
1996.
-
3a
Walsh CT.
Science
2004,
303:
1805
-
3b
Wöhr T.
Nahl F.
Nefzi A.
Rohwedder B.
Sato T.
Sun X.
Mutter M.
J. Am. Chem. Soc.
1996,
118:
9218
-
3c
Botti P.
Pallin DT.
Tam JP.
J. Am. Chem. Soc.
1996,
118:
10018
- 4
Gandolfi CA.
Di Domenico R.
Spinelli S.
Gallico L.
Fiocchi L.
Lotto A.
Menta E.
Borghi A.
Dalla Rosa C.
Tognella S.
J. Med. Chem.
1995,
38:
508
-
5a
Westland RD.
Lin MH.
Cooley RA.
Zwiesler ML.
Grenan MM.
J. Med. Chem.
1973,
16:
328
-
5b
Farmer PS.
Leung C.-C.
Lui EMK.
J. Med. Chem.
1973,
16:
411
-
5c
Wilmore BH.
Cassidy PB.
Warters RL.
Roberts JC.
J. Med. Chem.
2001,
44:
2661
- 6
Faury P.
Camplo M.
Charvet A.-S.
Mourier N.
Barthelemy P.
Graciet J.-C.
Kraus J.-L.
J. Heterocycl. Chem.
1994,
31:
1465
-
7a Engel W, Schieberle P, Guntert M, and Lambrecht S. inventors; Eur. Patent 1069116.
; Chem. Abstr. 2001, 134, 85321
-
7b
Schmidt CO.
Krammer GE.
Weber B.
Stoeckigt D.
Herbrand K.
Ott F.
Kindel G.
Brennecke S.
Gatfield IL.
Bertram H.-J.
Perfum. Flavor.
2005,
30:
28
- 8 Dubs O, Kuentzel H, Pesaro M, and Schmidt H. inventors; Patentschrift (Switz.).
; Chem. Abstr. 1977, 87, 201514
-
9a
Schneider PH.
Schrekker HS.
Silveira CC.
Wessjohann LA.
Braga AL.
Eur. J. Org. Chem.
2004,
2715
-
9b
Cremonesi G.
Dalla Croce P.
Fontana F.
Forni A.
La Rosa C.
Tetrahedron: Asymmetry
2005,
16:
3371
-
10a
Wang L.
Nakamura S.
Ito Y.
Toru T.
Tetrahedron: Asymmetry
2004,
15:
3059
-
10b
Wang L.
Nakamura S.
Toru T.
Org. Biomol. Chem.
2004,
2:
2169
- 11
Gawley RE.
Zhang Q.
McPhail AT.
Tetrahedron: Asymmetry
2000,
11:
2093
- 12 Meyers A. I., Edwards P. D., Rieker W. F., Bailey T. R.; J. Am. Chem. Soc.; 1984, 106: 3270
-
13a
Degl’Innocenti A.
Capperucci A.
Nocentini T.
Tetrahedron Lett.
2001,
42:
4557
-
13b
Capperucci A.
Ceré V.
Degl’Innocenti A.
Nocentini T.
Pollicino S.
Synlett
2002,
1447
- 14
Capperucci A.
Degl’Innocenti A.
Nocentini T.
Mordini A.
Biondi S.
Dini F.
Lett. Org. Chem.
2004,
1:
55
15
Typical Procedure: A solution of thiazolidine (1, 50 mg, 0.17 mmol), benzaldehyde (2a, 36 mg, 0.34 mmol) and activated MS (4 Å, 300 mg) was stirred at r.t. in freshly distilled THF (3 mL) under an inert atmosphere. TBAF (68 mL of a 1 M THF solution, 0.07 mmol) was added dropwise (0.2 equiv every hour). The mixture was stirred at r.t. and progression of the reaction was monitored by TLC. The reaction was quenched with H2O and the product was extracted into Et2O (2 mL). The resulting organic layer was washed with brine, dried over Na2SO4 and the solvent evaporated under vacuum. Purification using column chromatography (hexane-EtOAc, 4:1) afforded 13 mg (34%) of anti-3a and 13 mg (34%) of syn-3a. anti-3a: 1H NMR (200 MHz, CDCl3): δ = 3.04-3.15 (m, 2 H), 4.42-4.53 (m, 2 H), 4.99 (d, J = 1.8 Hz, 1 H), 5.52 (d, J = 1.8 Hz, 1 H), 7.36-7.42 (m, 5 H); 13C NMR (50 MHz, CDCl3): δ = 30.5, 40.5, 72.0, 79.9, 127.2, 127.4, 128.1, 138.3, 157.4; MS: m/z (%) = 221 (49) [M+], 130 (32), 115 (55), 91 (100), 87 (90), 77 (34). syn-3a: 1H NMR (200 MHz, CDCl3): δ = 2.90-3.01 (m, 2 H), 3.10-3.25 (m, 1 H), 4.36-4.44 (m, 1 H), 5.41 (d, J = 5.8 Hz, 1 H), 5.92 (d, J = 5.8 Hz, 1 H), 7.20-7.45 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 30.3, 41.5, 69.9, 81.2, 127.2, 127.6, 128.3, 138.6, 157.4. MS: m/z (%) = 221 (31) [M+], 130 (36), 115 (39), 91 (100), 87 (78), 77 (38).
16 Variable amounts of benzyloxytrimethylsilane were detected in the reactions affording cyclic compounds 3. However, we were unable to detect silylated derivatives of 5 even before work-up, either under TLC or GC/MS conditions.
17
Characterization of Compounds 3g and 5g: diastereomers were separated by preparative TLC (silica gel, hexane-EtOAc, 4:1). 7-(Thiophen-2-yl)tetrahydroxooxazolo[4,3-
b
]thiazol-5-one (
3g): (anti-3g): 1H NMR (200 MHz, CDCl3): δ = 2.95-3.10 (m, 2 H), 4.40-4.50 (m, 2 H), 5.14 (d, J = 1.6 Hz,1 H), 5.74 (d, J = 1.6 Hz, 1 H), 7.00-7.10 (m, 1 H), 7.14-7.20 (m, 1 H), 7.28-7.40 (m, 1 H); 13C NMR (50 MHz, CDCl3): δ = 31.8, 49.4, 71.3, 78.1, 126.8, 127.0, 127.1, 146.1, 157.6; MS: m/z (%) = 227 (74) [M+], 183 (19), 136 (33), 128 (29), 127 (47) 115 (50), 97 (26), 91 (40), 87 (100), 60 (59). (syn-3g): 1H NMR (200 MHz, CDCl3): δ = 2.95-3.10 (m, 2 H), 4.40-4.50 (m, 2 H), 5.36 (d, J = 5.6 Hz, 1 H), 6.10 (d, J = 5.6 Hz, 1 H), 7.00-7.10 (m, 1 H), 7.14-7.20 (m, 1 H), 7.28-7.40 (m, 1 H); 13C NMR (50 MHz, CDCl3): δ = 31.3, 49.7, 71.5, 77.8, 126.6, 126.8, 127.0, 145.6, 157.6; MS: m/z (%) = 227 (8) [M+], 149 (26), 111 (54), 97 (38), 91 (100), 71 (55). 1-[2-(Hydroxy(thiophen-2-yl)methyl]thiazolidin-3-yl)-2-phenylethanone (
5g): (anti-5g): 1H NMR (200 MHz, CDCl3): δ = 2.50-2.70 (m, 1 H), 2.70-2.90 (m, 1 H), 3.20-3.50 (m, 1 H), 3.95-4.20 (m, 1 H), 5.15 (d, J = 6.6 Hz, 1 H), 5.19 (m, 2 H), 5.44 (d, J = 6.6 Hz, 1 H), 7.00-7.10 (m, 1 H), 7.14-7.30 (m, 2 H), 7.32-7.45 (m, 5 H); 13C NMR (50 MHz, CDCl3): δ = 31.3, 49.4, 68.0, 71.5, 74.5, 125.7, 126.6, 127.0, 128.1, 128.3, 128.6, 135.0, 151.1. (syn-5g): 1H NMR (200 MHz, CDCl3): δ = 2.50-2.70 (m, 1 H), 2.70-2.90 (m, 1 H), 3.79-3.91 (m, 1 H), 4.20-4.35 (m, 1 H), 5.19 (m, 2 H), 5.29 (br s, 1 H), 5.52 (br s, 1 H), 7.00-7.10 (m, 1 H), 7.14-7.32 (m, 2 H), 7.33-7.46 (m, 5 H).
18
anti
-Benzyl 2-[hydroxy(phenyl)methyl]thiazolidine-3-carboxylate (anti-5a): 1H NMR (200 MHz,CDCl3): δ = 2.38-2.60 (m, 1 H), 2.61-2.80 (m, 1 H), 3.10-3.40 (m, 1 H), 3.92-4.19 (m, 1 H), 4.87 (d, J = 6.6 Hz, 1 H), 5.16 (m, 2 H), 5.45 (d, J = 6.6 Hz, 1 H), 7.18-7.45 (m, 10 H); 13C NMR (50 MHz, CDCl3): δ = 30. 5, 49.4, 68.0, 71.6, 79.0, 125.5, 127.3, 128.2, 128.4, 134.9, 136.0, 150.9.
19 A referee suggested that one equivalent of fluoride is necessary for total reaction with benzaldehydes substituted with an electron-withdrawing group because there may be an ineffective TMS transfer in these cases. In this event a classical nucleophilic reaction involving the complete desilylation by fluoride would operate.