RSS-Feed abonnieren
DOI: 10.1055/s-2006-949644
Modified Bucherer-Bergs Reaction for the One-Pot Synthesis of 5,5′-Disubstituted Hydantoins from Nitriles and Organometallic Reagents
Publikationsverlauf
Publikationsdatum:
24. August 2006 (online)
Abstract
Diverse sets of 5,5′-disubstituted hydantoins can conveniently be made in moderate to good yields (40-92%) by a one-pot process involving treatment of aromatic, heteroaromatic or aliphatic nitriles with an organometallic reagent (RLi or RMgX) followed by KCN/(NH4)2CO3.
Key words
heterocycles - multicomponent reactions - combinatorial chemistry
-
1a
Ware E. Chem. Rev. 1950, 46: 403 -
1b
López CA.Trigo GG. Adv. Heterocycl. Chem. 1985, 38: 177 -
1c
Meusel M.Gütschow M. Org. Prep. Proced. Int. 2004, 36: 391 - 2
Nakabayashi M.Regan MM.Lifsey D.Kantoff PW.Taplin M.-E.Sartor O.Oh WK. Br. J. Urol. Int. 2005, 96: 783 - 3
Bazil CW. Curr. Treat. Options Neurol. 2004, 6: 339 - 4
Nakajima M.Itoi K.Takamatsu Y.Kinoshita T.Okazaki T.Kawakubo K.Shindo M.Honma T.Tohjigamori M.Haneishi T. J. Antibiot. 1991, 44: 293 - 5
Burton SG.Dorrington RA. Tetrahedron: Asymmetry 2004, 15: 2737 - For recent illustrative examples, see:
-
6a
Zhang D.Xing XC.Cuny GD. J. Org. Chem. 2006, 71: 1750 -
6b
Ignacio JM.Macho S.Marcaccini S.Pepino R.Torroba T. Synlett 2005, 3051 -
6c
Patel VM.Desai KR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005, 44: 1084 -
6d
Manku S.Curran DP. J. Org. Chem. 2005, 70: 4470 -
6e
Alsina J.Scott WL.O’Donnell MJ. Tetrahedron Lett. 2005, 46: 3131 -
6f
Volonterio A.de Arellano CR.Zanda M. J. Org. Chem. 2005, 70: 2161 -
7a
Bergs H. inventors; DRP 566094. -
7b
Bucherer HT.Brandt W. J. Prakt. Chem. 1934, 140: 129 -
7c
Bucherer HT.Steiner W. J. Prakt. Chem. 1934, 140: 291 -
7d
Bucherer HT.Lieb VA. J. Prakt. Chem. 1934, 141: 5 ; see also ref. 1a - For recent applications, see:
-
8a
Wermuth UD.Jenkins ID.Bott RC.Byriel KA.Smith G. Aust. J. Chem. 2004, 57: 461 -
8b
Micová J.Steiner B.Koós M.Langer V.Gyepesová D. Carbohydr. Res. 2003, 338: 1917 -
8c
Micová J.Steiner B.Koós M.Langer V.Gyepesová D. Synlett 2002, 1715 - A similar approach has been used to improve and extend other multicomponent reactions, see:
-
9a
Simoneau CA.Ganem B. Tetrahedron 2005, 61: 11374 -
9b
Simoneau CA.George EA.Ganem B. Tetrahedron Lett. 2006, 47: 1205 - 10
Weiberth FJ.Hall SS. J. Org. Chem. 1987, 52: 3901 ; and references cited therein - 11
Wakefield BJ. The Chemistry of Organolithium Compounds Pergamon; Oxford: 1974. - 16
Shipman M, andMontagne C. inventors; GB 0603239.5.
References and Notes
Lower conversion was observed when the quantities of KCN and (NH4)2CO3 were reduced.
13
Experimental Method (Using RLi).
In a flame dried ACE thick-walled pressure tube under nitrogen, are successively added THF (1 mL) and the organolithium reagent (1.2 mmol). The solution is cooled to 0 °C whereupon the nitrile (1.0 mmol) is added. The reaction mixture is stirred for 30 min at 0 °C then carefully quenched with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 6 mmol), KCN (197 mg, 3 mmol; CAUTION) and H2O (4 mL) are successively added and the tube is sealed. The hetero-geneous solution is heated at 75 °C (preheated bath) for 24 h then allowed to cool to r.t. The mixture is poured into H2O (50 mL) and extracted with EtOAc (2 × 25 mL). The combined organic extract is washed with brine (25 mL), dried over MgSO4 and evaporated to dryness. The resulting solid is washed with n-pentane (2 × 10 mL) and dried under high vacuum to yield the hydantoin in a high state of purity as judged by NMR analysis and microanalytical data.
Selected Data.
Compound 5f: mp 228-229 °C. IR (neat): 3169, 2961, 1750, 1717, 1430, 1370, 1108, 764 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.92 (s, 9 H), 1.24 (s, 3 H), 7.95 (s, 1 H), 10.50 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 18.8, 24.5, 36.1, 66.8, 156.7, 178.2. MS (ES): m/z = 169 [M - H]-. HRMS (EI): m/z calcd for C8H12N2O2: 171.1134; found: 171.1128. Anal. Calcd for C8H14N2O2 (%): C, 56.45; H, 8.29; N, 16.46. Found: C, 56.52; H, 8.35; N, 16.35.
Compound 5h: mp 181-182 °C. IR (neat): 3180, 3052, 2927, 1774, 1709, 1432, 1232, 813, 756 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.89 (t, J = 7.0 Hz, 3 H), 1.09-1.20 (m, 1 H), 1.24-1.41 (m, 3 H), 2.00-2.09 (m, 2 H), 7.21 (dt, J = 1.0, 7.0 Hz, 1 H), 7.23 (d, J = 7.5 Hz, 1 H), 7.38-7.45 (m, 1 H), 7.53 (dt, J = 1.5, 8.2 Hz, 1 H), 8.31 (s, 1 H), 10.87 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 13.9, 22.0, 24.8, 34.7, 64.9, 116.3 (d, J = 22 Hz), 124.4 (d, J = 3 Hz), 126.3 (d, J = 11 Hz), 128.1 (d, J = 3 Hz), 130.4 (d, J = 9 Hz), 156.7, 160.4 (d, J = 247 Hz), 176.1. MS (ES): m/z = 249 [M - H]-. HRMS (EI): m/z calcd for C13H15FN2O2: 250.1118; found: 250.1114. Anal. Calcd for C13H15FN2O2 (%): C, 62.39; H, 6.04; N, 11.19. Found: C, 62.50; H, 6.11; N, 11.01.
Compound 5j: mp 244-245 °C. IR (neat): 3304, 3191, 1775, 1759, 1728, 1710, 1411, 1023, 747, 693 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 2.88 (s, 6 H), 6.70 (d, J = 8.8 Hz, 2 H), 7.11 (d, J = 8.8 Hz, 2 H), 7.29-7.40 (m, 5 H), 9.12 (s, 1 H), 10.9 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 40.0, 69.8, 111.9, 126.6, 127.1, 127.2, 127.7, 128.3, 140.4, 149.8, 156.0, 175.4. MS (ES): m/z = 294 [M - H]-. HRMS (EI): m/z calcd for C17H17N3O2: 295.1321; found: 295.1317. Anal. Calcd for C17H17N3O2 (%): C, 69.14; H, 5.80; N, 14.23. Found: C, 68.80; H, 5.88; N, 13.96.
Compound 5m: mp 199 °C (decomp.). IR (neat): 3227, 2958, 1767, 1736, 1713, 1396, 1232, 1006, 763, 710 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 1.14-1.32 (m, 2 H), 1.44-1.66 (m, 6 H), 2.63-2.73 (m, 1 H), 7.02 (dd, J = 3.8, 5.0 Hz, 1 H), 7.09 (dd, J = 1.3, 3.8 Hz, 1 H), 7.48 (dd, J = 1.3, 5.0 Hz, 1 H), 8.83 (s, 1 H), 10.83 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 25.0, 25.4, 26.2, 26.8, 46.6, 68.5, 124.5, 125.8, 127.0, 143.1, 156.9, 175.1. MS (ES): m/z = 249 [M - H]-. HRMS (EI): m/z calcd for C12H14N2O2S: 250.0776; found: 250.0767. Anal. Calcd for C12H14N2O2S (%): C, 57.58; H, 5.64; N, 11.19. Found: C, 57.91; H, 5.80; N, 11.04.
Compound 5q: mp 244-245 °C. IR (neat): 3250, 3042, 1760, 1712, 1598, 1450, 1255, 758 cm-1. 1H NMR (400 MHz, DMSO-d
6): δ = 0.92 (s, 9 H), 3.74 (s, 3 H), 6.88-6.92 (m, 1 H), 7.22-7.30 (m, 3 H), 8.91 (s, 1 H), 10.80 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 24.8, 37.8, 55.1, 71.9, 112.5, 113.8, 119.6, 128.3, 137.6, 156.3, 158.4, 175.3. MS (ES): m/z = 261 [M - H]-. HRMS (EI): m/z calcd for C14H19N2O3: 263.1396; found: 263.1384. Anal. Calcd for C14H18N2O3 (%): C, 64.10; H, 6.92; N, 10.68. Found: C, 64.00; H, 6.95; N, 10.59.
Experimental Method (Using RMgX).
In a flame-dried ACE pressure tube under nitrogen, are successively added copper iodide (9.5 mg, 0.05 mmol), THF (1 mL) and the organomagnesium reagent (1.2 mmol) immediately followed by the nitrile [1 mmol; either as liquid or in THF (1 mL) if solid]. The vessel is quickly heated to 70 °C (preheated bath) and maintained at this temperature for 24 h. Upon cooling to r.t., the reaction is carefully quenched with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 6 mmol), KCN (197 mg, 3 mmol; CAUTION) and H2O (4 mL) are successively added and the tube is sealed. The heterogeneous solution is heated at 75 °C (preheated bath) for 24 h then allowed to cool to r.t. The hydantoin is isolated using the same work-up and crystallisation protocol described in ref. 12.