Abstract
Asymmetric alkynylation reactions to linear alkyl and substituted aromatic aldehydes have been accomplished in good yields and with a range of selectivities. For aromatic aldehydes we observed that the selectivity of the alkynylation reaction appears to depend upon the substituents on the aromatic ring. Thus with electron-withdrawing substituents both the yield and enantioselectivities were good to excellent. In contrast to this, the presence of electron-donating groups provided excellent conversions; however, these were coupled with poor enantioselectivities.
Key words
asymmetric alkynylation reaction - aromatic aldehydes -
N-methylephedrine - organozinc - substituent effects - citronellal
References
1
Mann A.
Muller C.
Tyrrell E.
J. Chem. Soc., Perkin Trans. 1
1998,
1427
2
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
3 Review: Roxburgh CJ.
Synthesis
1996,
3:
307
4
Tyrrell E.
Millet J.
Tesfa KH.
Asymmetric Synthesis with Chemical and Biological Methods 9th International SFB Symposium, October 10-11, 2005, Aachen, Germany; Abstract 226
5
Schreiber SL.
Klimas MT.
Sammakia T.
J. Am. Chem. Soc.
1987,
20:
207
6
Muehldorf AV.
Guzman-Perez A.
Kluge AF.
Tetrahedron Lett.
1994,
35:
8755
7
Grove DD.
Corte JR.
Spencer RP.
Pauly ME.
Rath NP.
J. Chem. Soc., Chem. Commun.
1994,
49
Using asymmetric hydroboration techniques:
8a
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1995,
36:
9153
8b
Parker KA.
Ledeboer MW.
J. Org. Chem.
1996,
61:
3214
8c Using transition-metal-catalysed hydrogenation, see: Matsumura K.
Hashiguchi S.
Ikariya T.
Noyori R.
J. Am. Chem. Soc.
1997,
119:
8738
9
Lu G.
Li Y.-M.
Li X.-S.
Chan ASC.
Coord. Chem. Rev.
2005,
249:
1736
10
Katritzky AR.
Meth-Cohn O.
Rees CW.
Comprehensive Organic Functional Group Transformations
Vol. 1:
Elsevier Sciences Ltd.;
Amsterdam:
2005.
1.21.
11
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757
12
Watts CC.
Thoniyot P.
Hirayama LC.
Romano T.
Singaram B.
Tetrahedron: Asymmetry
2005,
16:
1829
13a
Frantz DE.
Fassler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
13b
Anand NK.
Carreira EM.
J. Am. Chem. Soc.
2001,
123:
9687
13c
Boyall D.
Frantz DE.
Carreira EM.
Org. Lett.
2002,
4:
2605
14a
Lu G.
Li X.
Zhou Z.
Chan WL.
Chan ASC.
Tetrahedron: Asymmetry
2001,
12:
2147
14b
Li Z.
Upahhyay V.
DeCamp AE.
DiMichele L.
Reider PJ.
Synthesis
1999,
1453
15a
Pizzuti MG.
Superchi S.
Tetrahedron: Asymmetry
2005,
16:
2263
15b
Kang Y.-F.
Wang R.
Liu L.
Da C S.
Yan W.-J.
Xu Z.-Q.
Tetrahedron Lett.
2005,
46:
863
16
Tyrrell E.
Tillett C.
Tetrahedron Lett.
1998,
39:
9535
17a
Dale JA.
Dull D.
Mosher HS.
J. Org. Chem.
1969,
34:
2543
17b
Dale JA.
Mosher HS.
J. Am. Chem. Soc.
1973,
95:
512
18 The results from these studies will be disseminated at a later date (although see ref. 4).
19 All compounds provided satisfactory spectral data that were consistent with the assigned structures. For succinctness we have limited the experimental section to a representative example of salicylaldehyde derivatives, e.g. non-substituted, mono- and di-substituted and naphthyl derivatives. Optical rotation data and HPLC retention times are included for all relevant examples.