Abstract
Traditional strategies in indole chemistry do not allow high-yielding access to some substitution patterns such as 3,5,7-trisubstituted indoles. We report in this article the efficient synthesis of this type of indole. The Heck cyclisation strategy we used allows the synthesis of 7-iodo-, 7-alkoxy-, 7-amino-, and 7-nitroindoles bearing other functionalities at the 3- and 5-positions. We believe that the mild conditions used should allow the preparation of indoles with a wide range of substituents in these two positions as shown by the synthesis of a 5-bromo-7-iodoindole. However, this strategy has some limitations in the case of very electron-deficient indoles such as a 7-nitroindole where the aromatisation of the 7-nitrodihydroindole intermediate is not complete. In this case, Larock’s indole synthesis from disubstituted acetylenes proved to be more appropriate.
Key words
indoles - Heck reaction - palladium - 2-vinylanilines - Larock’s cyclisation
References
1
Saxton JE.
The Chemistry of Heterocyclic Compounds
Vol. 25, Part IV:
Wiley;
New York:
1983.
2 A search for the indole core in the WDI database retrieved more than 3700 hits. See also ref. 12a.
3
Charrier N.
Demont E.
Dunsdon R.
Maile G.
Naylor A.
O’Brien A.
Redshaw S.
Theobald P.
Vesey D.
Walter D.
Synlett
2005,
3071
4a
Heath-Brown B.
Philpott PG.
J. Chem. Soc.
1965,
7185
4b
McKittrick B.
Failli A.
Steffan RJ.
Soll RM.
Schmid J.
Asselin AA.
Shaw CC.
Noureldin R.
Gavin G.
J. Heterocycl. Chem.
1990,
27:
2151
5
Bartoli G.
Palmieri G.
Bosco M.
Dalpozzo R.
Tetrahedron Lett.
1989,
30:
2129
6a
Clark RD.
Repke DB.
Heterocycles
1984,
22:
195
6b
Moyer MP.
Shiurba JF.
Rapoport H.
J. Org. Chem.
1986,
51:
5106
For a review on the use of transition metals in the synthesis and functionalisation of indoles, see:
7a
Hegedus LS.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1113
For a recent and very well-documented review on the synthesis of indoles through palladium-catalysed reactions, see:
7b
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
8
Hartung CG.
Fecher A.
Chapell B.
Snieckus V.
Org. Lett.
2003,
5:
1899
9a
Somei M.
Saida Y.
Heterocycles
1985,
23:
3113
9b
Somei M.
Yamada F.
Hamada H.
Kawasaki T.
Heterocycles
1989,
29:
643
10
Iwao M.
Heterocycles
1994,
38:
45
11 This list is not exhaustive. For example, since the completion of this work, a one-pot synthesis of indoles via enamines has been reported, see: Barluenga J.
Fernandez MA.
Aznar F.
Valdes C.
Chem. Eur. J.
2005,
11:
2276 ; see also ref. 7b
For a very comprehensive overview of the challenges posed by the synthesis of 7-substituted indoles, see:
12a
Ezquerra J.
Pedregal C.
Lamas C.
Barluenga J.
Perez M.
Garcia-Martin MA.
Gonzales JM.
J. Org. Chem.
1996,
61:
5804 ; and references cited therein
12b
Rodriguez AL.
Koradin C.
Dohle W.
Knochel P.
Angew. Chem. Int. Ed.
2000,
39:
2488 ; and references cited therein
12c
Koradin C.
Dohle W.
Rodriguez AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571
It is possible to functionalise the 3-position in situ, but it needs concomitant substitution at the 2-position:
13a
Arcadi A.
Cacchi S.
Marinelli F.
Tetrahedron Lett.
1992,
33:
3915
13b
Arcadi A.
Cacchi S.
Carcinelli V.
Marinelli F.
Tetrahedron
1994,
50:
437
14
Okauchi T.
Itonaga M.
Minami T.
Owa T.
Kitoh K.
Yoshino H.
Org. Lett.
2000,
2:
1485
15
Iwao M.
Motoi O.
Fukuda T.
Ishibashi F.
Tetrahedron
1998,
54:
8999
16
Heydari A.
Mehrdad M.
Maleki A.
Ahmadi N.
Synthesis
2004,
1563
17a
Odle R.
Blevins B.
Ratcliff M.
Hegedus LS.
J. Org. Chem.
1980,
45:
2709
17b
Yang S.
Chung W.
Indian J. Chem., Sect. B
1999,
38:
897
18a
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
For application to total synthesis, see:
18b
Chen C.
Lieberman DR.
Larsen RD.
Reamer RA.
Verhoeven TR.
Reider PJ.
Tetrahedron Lett.
1994,
35:
6981
18c
Liu X.
Deschamp JR.
Cook JM.
Org. Lett.
2002,
4:
3339
19
Hegedus LS.
Allen GF.
Bozell JJ.
Waterman EL.
J. Am. Chem. Soc.
1978,
100:
5800
20a
O’Shea DF.
Kerins F.
J. Org. Chem.
2002,
67:
4968
20b
Coleman CM.
O’Shea DF.
J. Am. Chem. Soc.
2003,
125:
4054
21 The synthesis of the 7-substituted indoles will be described with ethyl or n -propyl at the 3-position. The synthetic routes described in this paper are applicable to both substituents.
22
Macor JE.
Ogilvie RJ.
Wythes MJ.
Tetrahedron Lett.
1996,
37:
4289
23a
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
23b
Jeffery T.
Tetrahedron
1996,
52:
10113
Reviews:
23c
De Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
23d
Jeffery T. In Advances in Metal-Organic Chemistry
Vol. 5:
Liebeskind LS.
JAI Press;
Greenwich CT:
1996.
p.153-260
24 For a recent synthesis of 7-hydroxy-indole, see: Lerman L.
Weinstock-Rosin M.
Nudelman A.
Synthesis
2004,
3043
25
Bosch J.
Roca T.
Armengol M.
Fernandez-Forner D.
Tetrahedron
2001,
57:
1041 ; see also ref. 22
26 For a review on iodination of aryl compounds, see: Merkushev EB.
Synthesis
1988,
923
27 This side reaction is not observed with 2-nitro aniline: Ragagnin G.
Knochel P.
Synlett
2004,
951
Bis(pyridine)iodonium(I) tetrafluoroborate is also efficient for high-yielding selective iodination of aniline; see ref. 12a and:
28a
Barluenga J.
Gonzalez JM.
Garcia-Martin MA.
Campos PJ.
Asensio G.
J. Org. Chem.
1993,
58:
2058
28b
Barluenga J.
Rodriguez MA.
Campos PJ.
J. Org. Chem.
1990,
55:
3104
29
Gardiner JM.
Loyns CR.
Schwalbe CH.
Barrett GC.
Lowe PR.
Tetrahedron
1995,
51:
4101. Methyl 4-bromo-1-hydroxy-2-[(E )-prop-1-enyl]-1H -benzimidazole-6-carboxylate(23a ) has the following characteristics: white solid; mp 186-188 °C; 1 H NMR (400 MHz, DMSO-d
6 ): δ = 2.02 (dd, J = 7.2, 2.0 Hz, 3 H), 3.89 (s, 3 H), 6.68 (dd, J = 14.0, 2.0 Hz, 1 H), 7.17 (dq, J = 14.0, 7.2 Hz, 1 H), 7.95 (s, 1 H), 8.00 (s, 1 H), 12.70 (br s, 1 H); 13 C NMR (100.6 MHz, DMSO-d
6 ): δ = 18.7, 52.3, 110.2, 111.4, 116.0, 124.1, 125.1, 132.4, 138.6, 139.5, 150.2, 165.3; ESI-MS: m /z = 310.9, 312.9 [M + H+ ]
30 An NOE experiment proved that the stereochemistry of the exocyclic double bond is as shown in Scheme
[7 ]
.
31
Hegedus LS.
Mulhern TA.
Mori A.
J. Org. Chem.
1985,
50:
4282 ; See also ref. 17b
32
Sakamoto T.
Kondo Y.
Uchiyama M.
Yamanaka H.
J. Chem. Soc., Perkin Trans. 1
1993,
1941
33 See references 133d and 136a-e cited in ref. 7b.
34 Compounds 28a and 28b are drawn as acids for convenience, but are isolated as trimers. See ref. 20a.
Sulfonamide:
35a
Krolski ME.
Renaldo AF.
Rudisill DE.
Stille JK.
J. Org. Chem.
1988,
53:
1170
Acetanilide:
35b
Kasahara A.
Izumi T.
Murakami S.
Miyamoto K.
Hino T.
J. Heterocycl. Chem.
1989,
26:
1405
Anilines:
35c
Yamaguchi M.
Arisawa M.
Hirama M.
Chem. Commun.
1998,
1399
35d
Adams DR.
Duncton MAJ.
Roffey JRA.
Spencer J.
Tetrahedron Lett.
2002,
43:
7581
36 The synthesis of indoles from 2-halogenated anilines and a (2-alkoxyvinyl)boronic ester, followed by hydrolysis and in situ cyclisation has also been described. However, the synthesis of the (2-alkoxyvinyl)boronic ester requires two steps and we felt this route would not offer significant advantages compared to the others (see below): Satoh M.
Miyaura N.
Suzuki A.
Synthesis
1987,
373
37 The structure of 30 was assigned by an NOE experiment.
38 We ensured that we were able to reproduce Larock’s results on 2-iodoaniline. Under the same conditions, methyl 4-amino-3-iodo-benzoate gave a 94:6 mixture of isomers. Within this set of examples, the selectivity appears related to the electron deficiency of the aromatic ring.
39 We did not attempt to increase the yield of the ring formation by using substituents more stable than trimethylsilyl to the reaction conditions, since the yield obtained was adequate for our purposes.
40 Removal of the trifluoroacetamido group proved easier for 25 (deprotection takes 45 minutes at room temperature) than for 14 (deprotection not complete after two days under similar conditions).
41
Wheeler L.
Am. Chem. J.
1909,
42:
457
42
Dains V.
Vaughan J.
J. Am. Chem. Soc.
1918,
40:
932
43
Borsche W.
Stackmann L.
Makaroff-Semljanski J.
Chem. Ber.
1916,
49:
2230