Subscribe to RSS
DOI: 10.1055/s-2006-950223
Synthesis of Indoles: Efficient Functionalisation of the 7-Position
Publication History
Publication Date:
04 September 2006 (online)
Abstract
Traditional strategies in indole chemistry do not allow high-yielding access to some substitution patterns such as 3,5,7-trisubstituted indoles. We report in this article the efficient synthesis of this type of indole. The Heck cyclisation strategy we used allows the synthesis of 7-iodo-, 7-alkoxy-, 7-amino-, and 7-nitroindoles bearing other functionalities at the 3- and 5-positions. We believe that the mild conditions used should allow the preparation of indoles with a wide range of substituents in these two positions as shown by the synthesis of a 5-bromo-7-iodoindole. However, this strategy has some limitations in the case of very electron-deficient indoles such as a 7-nitroindole where the aromatisation of the 7-nitrodihydroindole intermediate is not complete. In this case, Larock’s indole synthesis from disubstituted acetylenes proved to be more appropriate.
Key words
indoles - Heck reaction - palladium - 2-vinylanilines - Larock’s cyclisation
- 1
Saxton JE. The Chemistry of Heterocyclic Compounds Vol. 25, Part IV: Wiley; New York: 1983. - 3
Charrier N.Demont E.Dunsdon R.Maile G.Naylor A.O’Brien A.Redshaw S.Theobald P.Vesey D.Walter D. Synlett 2005, 3071 -
4a
Heath-Brown B.Philpott PG. J. Chem. Soc. 1965, 7185 -
4b
McKittrick B.Failli A.Steffan RJ.Soll RM.Schmid J.Asselin AA.Shaw CC.Noureldin R.Gavin G. J. Heterocycl. Chem. 1990, 27: 2151 - 5
Bartoli G.Palmieri G.Bosco M.Dalpozzo R. Tetrahedron Lett. 1989, 30: 2129 -
6a
Clark RD.Repke DB. Heterocycles 1984, 22: 195 -
6b
Moyer MP.Shiurba JF.Rapoport H. J. Org. Chem. 1986, 51: 5106 - For a review on the use of transition metals in the synthesis and functionalisation of indoles, see:
-
7a
Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988, 27: 1113 - For a recent and very well-documented review on the synthesis of indoles through palladium-catalysed reactions, see:
-
7b
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 - 8
Hartung CG.Fecher A.Chapell B.Snieckus V. Org. Lett. 2003, 5: 1899 -
9a
Somei M.Saida Y. Heterocycles 1985, 23: 3113 -
9b
Somei M.Yamada F.Hamada H.Kawasaki T. Heterocycles 1989, 29: 643 - 10
Iwao M. Heterocycles 1994, 38: 45 - 11 This list is not exhaustive. For example, since the completion of this work, a one-pot synthesis of indoles via enamines has been reported, see:
Barluenga J.Fernandez MA.Aznar F.Valdes C. Chem. Eur. J. 2005, 11: 2276 ; see also ref. 7b - For a very comprehensive overview of the challenges posed by the synthesis of 7-substituted indoles, see:
-
12a
Ezquerra J.Pedregal C.Lamas C.Barluenga J.Perez M.Garcia-Martin MA.Gonzales JM. J. Org. Chem. 1996, 61: 5804 ; and references cited therein -
12b
Rodriguez AL.Koradin C.Dohle W.Knochel P. Angew. Chem. Int. Ed. 2000, 39: 2488 ; and references cited therein -
12c
Koradin C.Dohle W.Rodriguez AL.Schmid B.Knochel P. Tetrahedron 2003, 59: 1571 - It is possible to functionalise the 3-position in situ, but it needs concomitant substitution at the 2-position:
-
13a
Arcadi A.Cacchi S.Marinelli F. Tetrahedron Lett. 1992, 33: 3915 -
13b
Arcadi A.Cacchi S.Carcinelli V.Marinelli F. Tetrahedron 1994, 50: 437 - 14
Okauchi T.Itonaga M.Minami T.Owa T.Kitoh K.Yoshino H. Org. Lett. 2000, 2: 1485 - 15
Iwao M.Motoi O.Fukuda T.Ishibashi F. Tetrahedron 1998, 54: 8999 - 16
Heydari A.Mehrdad M.Maleki A.Ahmadi N. Synthesis 2004, 1563 -
17a
Odle R.Blevins B.Ratcliff M.Hegedus LS. J. Org. Chem. 1980, 45: 2709 -
17b
Yang S.Chung W. Indian J. Chem., Sect. B 1999, 38: 897 -
18a
Larock RC.Yum EK.Refvik MD. J. Org. Chem. 1998, 63: 7652 - For application to total synthesis, see:
-
18b
Chen C.Lieberman DR.Larsen RD.Reamer RA.Verhoeven TR.Reider PJ. Tetrahedron Lett. 1994, 35: 6981 -
18c
Liu X.Deschamp JR.Cook JM. Org. Lett. 2002, 4: 3339 - 19
Hegedus LS.Allen GF.Bozell JJ.Waterman EL. J. Am. Chem. Soc. 1978, 100: 5800 -
20a
O’Shea DF.Kerins F. J. Org. Chem. 2002, 67: 4968 -
20b
Coleman CM.O’Shea DF. J. Am. Chem. Soc. 2003, 125: 4054 - 22
Macor JE.Ogilvie RJ.Wythes MJ. Tetrahedron Lett. 1996, 37: 4289 -
23a
Jeffery T.David M. Tetrahedron Lett. 1998, 39: 5751 -
23b
Jeffery T. Tetrahedron 1996, 52: 10113 - Reviews:
-
23c
De Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 -
23d
Jeffery T. In Advances in Metal-Organic Chemistry Vol. 5:Liebeskind LS. JAI Press; Greenwich CT: 1996. p.153-260 - 24 For a recent synthesis of 7-hydroxy-indole, see:
Lerman L.Weinstock-Rosin M.Nudelman A. Synthesis 2004, 3043 - 25
Bosch J.Roca T.Armengol M.Fernandez-Forner D. Tetrahedron 2001, 57: 1041 ; see also ref. 22 - 26 For a review on iodination of aryl compounds, see:
Merkushev EB. Synthesis 1988, 923 - 27 This side reaction is not observed with 2-nitro aniline:
Ragagnin G.Knochel P. Synlett 2004, 951 - Bis(pyridine)iodonium(I) tetrafluoroborate is also efficient for high-yielding selective iodination of aniline; see ref. 12a and:
-
28a
Barluenga J.Gonzalez JM.Garcia-Martin MA.Campos PJ.Asensio G. J. Org. Chem. 1993, 58: 2058 -
28b
Barluenga J.Rodriguez MA.Campos PJ. J. Org. Chem. 1990, 55: 3104 - 29
Gardiner JM.Loyns CR.Schwalbe CH.Barrett GC.Lowe PR. Tetrahedron 1995, 51: 4101. Methyl 4-bromo-1-hydroxy-2-[(E)-prop-1-enyl]-1H-benzimidazole-6-carboxylate(23a) has the following characteristics: white solid; mp 186-188 °C; 1H NMR (400 MHz, DMSO-d 6): δ = 2.02 (dd, J = 7.2, 2.0 Hz, 3 H), 3.89 (s, 3 H), 6.68 (dd, J = 14.0, 2.0 Hz, 1 H), 7.17 (dq, J = 14.0, 7.2 Hz, 1 H), 7.95 (s, 1 H), 8.00 (s, 1 H), 12.70 (br s, 1 H); 13C NMR (100.6 MHz, DMSO-d 6): δ = 18.7, 52.3, 110.2, 111.4, 116.0, 124.1, 125.1, 132.4, 138.6, 139.5, 150.2, 165.3; ESI-MS: m/z = 310.9, 312.9 [M + H+] - 31
Hegedus LS.Mulhern TA.Mori A. J. Org. Chem. 1985, 50: 4282 ; See also ref. 17b - 32
Sakamoto T.Kondo Y.Uchiyama M.Yamanaka H. J. Chem. Soc., Perkin Trans. 1 1993, 1941 - Sulfonamide:
-
35a
Krolski ME.Renaldo AF.Rudisill DE.Stille JK. J. Org. Chem. 1988, 53: 1170 - Acetanilide:
-
35b
Kasahara A.Izumi T.Murakami S.Miyamoto K.Hino T. J. Heterocycl. Chem. 1989, 26: 1405 - Anilines:
-
35c
Yamaguchi M.Arisawa M.Hirama M. Chem. Commun. 1998, 1399 -
35d
Adams DR.Duncton MAJ.Roffey JRA.Spencer J. Tetrahedron Lett. 2002, 43: 7581 - 36 The synthesis of indoles from 2-halogenated anilines and a (2-alkoxyvinyl)boronic ester, followed by hydrolysis and in situ cyclisation has also been described. However, the synthesis of the (2-alkoxyvinyl)boronic ester requires two steps and we felt this route would not offer significant advantages compared to the others (see below):
Satoh M.Miyaura N.Suzuki A. Synthesis 1987, 373 - 41
Wheeler L. Am. Chem. J. 1909, 42: 457 - 42
Dains V.Vaughan J. J. Am. Chem. Soc. 1918, 40: 932 - 43
Borsche W.Stackmann L.Makaroff-Semljanski J. Chem. Ber. 1916, 49: 2230
References
A search for the indole core in the WDI database retrieved more than 3700 hits. See also ref. 12a.
21The synthesis of the 7-substituted indoles will be described with ethyl or n-propyl at the 3-position. The synthetic routes described in this paper are applicable to both substituents.
30An NOE experiment proved that the stereochemistry of the exocyclic double bond is as shown in Scheme [7] .
33See references 133d and 136a-e cited in ref. 7b.
34Compounds 28a and 28b are drawn as acids for convenience, but are isolated as trimers. See ref. 20a.
37The structure of 30 was assigned by an NOE experiment.
38We ensured that we were able to reproduce Larock’s results on 2-iodoaniline. Under the same conditions, methyl 4-amino-3-iodo-benzoate gave a 94:6 mixture of isomers. Within this set of examples, the selectivity appears related to the electron deficiency of the aromatic ring.
39We did not attempt to increase the yield of the ring formation by using substituents more stable than trimethylsilyl to the reaction conditions, since the yield obtained was adequate for our purposes.
40Removal of the trifluoroacetamido group proved easier for 25 (deprotection takes 45 minutes at room temperature) than for 14 (deprotection not complete after two days under similar conditions).