Subscribe to RSS
DOI: 10.1055/s-2006-950310
Phosphorus Ylide Based Functionalizations of Tetronic and Tetramic Acids
Publication History
Publication Date:
09 October 2006 (online)
Abstract
The versatility of the ylide (triphenylphosphoranylidene)ketene (Ph3P=C=C=O, 3) in the construction of tetronic and tetramic acids from various carboxylic acid derivatives is demonstrated by new reactions and extensions of known ones. With α-hydroxy or α-amino esters, 3 affords tetronates or tetramates. A two-step synthesis of (-)-epi-blastmycinolactol shows that allyl α-hydroxy esters can be domino Wittig-Claisen reacted to give 3-allyltetronic acids. More extended Wittig-Claisen-Conia cascades can produce 3-alkylidenefuran-2,4-diones, the photooxygenation of which furnishes lactone endoperoxides with antiplasmodial potential. Tetronic acids can be acylated by 3 at C3 to give the corresponding acyl ylides. Their saponification yields the respective 3-acetyl compounds, e.g. the fungal metabolite pesthetoxin. α-Hydroxy acids react with 3 to afford the corresponding 3-phosphoranylidenefuran-2,4-diones. The antibiotic (R)-reutericyclin was built up from benzyl d-leucinate and 3 in four steps by downstream acylation first at C3, then at N1 without racemization.
Key words
domino reactions - phosphorus ylides - tetramic acids - lactones - reutericyclin
- 1
Faulkner DJ. Nat. Prod. Rep. 1984, 1: 551 - 2
Pattenden G. Fortschr. Chem. Org. Naturst. 1978, 35: 133 - 3
Steglich W. Pure Appl. Chem. 1989, 61: 281 - 4
Haynes LJ.Plimmer JR. Q. Rev., Chem. Soc. 1960, 14: 292 - 5
Roggo BE.Petersen F.Delmendo R.Jenny H.-B.Peter HH.Roesel J. J. Antibiot. 1994, 47: 136 - 6
Hamaguchi T.Sudo T.Osada H. FEBS Lett. 1995, 372: 54 -
7a
Gänzle MG.Höltzel A.Walter J.Jung G.Hammes WP. Appl. Environ. Microbiol. 2000, 66: 4325 -
7b
Höltzel A.Gänzle MG.Nicholson GJ.Hammes WP.Jung G. Angew. Chem. Int. Ed. 2000, 39: 2766 -
7c
Marquardt U.Schmid D.Jung G. Synlett 2000, 1131 -
7d
Böhme R.Jung G.Breitmaier E. Helv. Chim. Acta 2005, 88: 2873 - 8
Ghisalberti EL. Bioactive Tetramic Acid Metabolites, In Studies in Natural Products Chemistry Vol. 28: . Elsevier; Amsterdam: 2003. p.109-163 - 9
Gossauer A. Fortschr. Chem. Org. Naturst. 2003, 86: 1 - 10
Royles BJL. Chem. Rev. 1995, 95: 1981 - 11
Davies DH.Snape EW.Suter PJ.King TJ.Falshaw CP. J. Chem. Soc., Chem. Commun. 1981, 1073 - 12
Nowak A.Steffan B. Liebigs Ann./Recl. 1997, 9: 1817 - 13
Harrison P.Duspara PA.Jenkins SI.Kassam SA.Liscombe DK.Hughes DW. J. Chem. Soc., Perkin. Trans. 1 2000, 4390 - 14
Schipper D.van der Baan JL.Bickelhaupt F. J. Chem. Soc., Perkin. Trans. 1 1979, 2017 - 15
Chen H.Harrison PHM. Org. Lett. 2004, 6: 4033 - 16
Sims JW.Fillmore JP.Warner DD.Schmidt EW. Chem. Commun. 2005, 186 - 17
Bentley R.Bhate DS.Keil JG. J. Biol. Chem. 1962, 237: 859 - 18
Sekiyama Y.Fujimoto Y.Hasumi K.Endo A. J. Org. Chem. 2001, 66: 5649 - 19
Lacey RN. J. Chem. Soc. 1954, 850 - 20
Andrews MD.Brewster AG.Crapnell KM.Ibbett AJ.Jones T.Moloney MG.Prout K.Watkin D. J. Chem. Soc., Perkin Trans. 1 1998, 223 - 21
Dixon DJ.Ley SV.Longbottom DA. J. Chem. Soc., Perkin Trans. 1 1999, 2231 - 22
Ley SV.Smith SC.Woodward PR. Tetrahedron 1992, 48: 1145 - 23
Jouin P.Castro B.Nisato D. J. Chem. Soc., Perkin Trans. 1 1987, 1177 - 24
Raillard SP.Chen W.Sullivan E.Bajjalieh W.Bhandari A.Baer TA. J. Comb. Chem. 2002, 4: 470 - 25
Pirc S.Bevk D.Jakse R.Recnik S.Goic L.Stanovnik B.Svete J. Synthesis 2005, 2969 - 26
Hamilakis S.Kontonassios D.Sandris C. J. Heterocycl. Chem. 1996, 33: 825 - 27
Effenberger F.Syed J. Tetrahedron: Asymmetry 1998, 9: 817 - 28
Jones RCF.Begley MJ.Peterson GE.Sumaria S. J. Chem. Soc., Perkin Trans. 1 1990, 1959 - 29
Hori K.Arai M.Nomura K.Yoshii E. Chem. Pharm. Bull. 1987, 35: 4368 - 30
Ley SV.Trudell ML.Wadsworth DJ. Tetrahedron 1991, 47: 8285 - 31
Boeckman RK.Thomas AJ. J. Org. Chem. 1982, 47: 2823 - 32
Schobert R.Boeckman RK.Pero JE. Org. Synth. Vol. 82: John Wiley & Sons; London: 2005. p.140 - 33
Schobert R.Jagusch C.Melanophy C.Mullen G. Org. Biomol. Chem. 2004, 2: 3524 -
34a
Löffler J.Schobert R. J. Chem. Soc., Perkin Trans. 1 1996, 2799 -
34b
Schobert R.Löffler J.Siegfried S. Targets Heterocycl. Syst. 1999, 3: 245 - 35
Schobert R.Jagusch C. J. Org. Chem. 2005, 70: 6129 - 36
Schobert R.Jagusch C. Tetrahedron 2005, 61: 2301 -
37a
Schobert R.Siegfried S.Gordon GJ.Nieuwenhuyzen M.Allenmark S. Eur. J. Org. Chem. 2001, 1951 -
37b
Schobert R.Gordon GJ.Bieser A.Milius W. Eur. J. Org. Chem. 2003, 3637 -
37c
Schobert R.Gordon GJ.Mullen G.Stehle R. Tetrahedron Lett. 2004, 45: 1121 - 38
Nishide K.Aramata A.Kamanaka T.Inoue T.Node M. Tetrahedron 1994, 50: 8337 - 39
Schobert R.Siegfried S.Nieuwenhuyzen M.Milius W.Hampel F. J. Chem. Soc., Perkin Trans. 1 2000, 1723 - 40
Kimura J.Kouge A.Nakamura K.Koshino H.Uzawa J.Fujioka S.Kawano T. Biosci. Biotechnol. Biochem. 1998, 62: 1624 -
41a
Gelin S.Pollet P. Tetrahedron Lett. 1980, 21: 4491 -
41b
Mitsos C.Zografos A.Igglessi-Markopoulou O. J. Heterocycl. Chem. 2002, 39: 1201 -
41c
Skylaris CK.Igglessi-Markopoulou O.Markopoulos J. Chem. Phys. 2003, 293: 355 -
42a
Fürst T. Ph.D. Thesis University of Erlangen; Germany: 1994. -
42b
Bestmann HJ.Fürst T.Schier A. Angew. Chem. Int. Ed. 1993, 32: 1746 -
42c
Bestmann HJ.Fürst T.Schier A. Angew. Chem. Int. Ed. 1993, 32: 1747 - For syntheses of similar systems via other routes, see:
-
43a
Chopard PA. Helv. Chim. Acta 1967, 50: 1016 -
43b
Aitken RA.Buchanan GM.Karodia N.Massil T.Young RJ. Tetrahedron Lett. 2001, 42: 141 -
44a
Dahn H.Lawendel JS. Helv. Chim. Acta 1954, 37: 1318 -
44b
Wasserman HH.Parr J. Acc. Chem. Res. 2004, 37: 687 - 45
Schobert R.Siegfried S.Gordon GJ.Mulholland D.Nieuwenhuyzen M. Tetrahedron Lett. 2001, 42: 4561 - 46
Silva LF. Synthesis 2001, 671 - 47
Brocksom TJ.Coelho F.Depres J.-P.Greene AE.Freire de Lima ME.Hamelin O.Hartmann B.Kanazawa AM.Wang Y. J. Am. Chem. Soc. 2002, 124: 15313 -
48a
McMorris TC.Anchel M. J. Am. Chem. Soc. 1965, 87: 1594 -
48b
McMorris TC.Kelner MJ.Wang W.Yu J.Estes LA.Taefle R. J. Nat. Prod. 1996, 59: 896 - 49
Yamada K.Ojika M.Kigoshi H. Angew. Chem. Int. Ed. 1998, 37: 1818 ; Angew. Chem. 1998, 110, 1918 - 50
Schobert R.Stehle R.Milius W. J. Org. Chem. 2003, 68: 9827 - 52
Marshall E. Science 2000, 290: 438 - 53
Posner GH.Cumming JN.Woo S.-H.Ploypradith P.Xie S.Shapiro TA. J. Med. Chem. 1998, 41: 940 -
55a
Steyn PS.Wessels PL. Tetrahedron Lett. 1978, 19: 4707 -
55b
Nolte MJ.Steyn PS.Wessels PL. J. Chem. Soc., Perkin Trans. 1 1980, 1057 - 56
Barkley JV.Markopoulos J.Igglessi-Markopoulou O. J. Chem. Soc., Perkin Trans. 2 1994, 1057 - 57
Lebrun MH.Nicolas L.Boutar M.Gaudemer F.Ranomenjanahary S.Gaudemer A. Phytochemistry 1988, 27: 77 - 58
Fujita M.Nakao Y.Matsunaga S.Seiki M.Itoh H.van Soest RWM.Fusetani N. Tetrahedron 2001, 57: 1229 - 59
Dippenaar A.Holzapfel CW.Boeyens JCA. J. Cryst. Mol. Struct. 1978, 7: 189 - 60
Imamura N.Adachi K.Sano H. J. Antibiot. 1994, 47: 257 - 61
Kaufmann GF.Sartorio R.Lee S.Rogers CJ.Meijler MM.Moss JA.Clapham B.Brogan AP.Dickerson TJ.Janda KD. Proc. Natl. Acad. Sci. U.S.A. 2005, 102: 309 -
62a
Gänzle MG.Vogel RF. Appl. Environ. Microbiol. 2003, 69: 1305 -
62b
Gänzle MG. Appl. Microbiol. Biotechnol. 2004, 64: 326 - 63
Poncet J.Jouin P.Castro B.Nicolas L.Boutar M.Gaudemer A. J. Chem. Soc., Perkin Trans. 1 1990, 611 - 64
Raddatz P.Minck K.-O.Rippmann F.Schmitges C.-J. J. Med. Chem. 1994, 37: 486 - 65
Shiosaki K.Rapoport H. J. Org. Chem. 1985, 50: 1229 - 66
Pons L.Veldstra H. Recl. Trav. Chim. Pays-Bas Belg. 1955, 74: 1217 - 67
Stork G.Szajewski RP. J. Am. Chem. Soc. 1974, 96: 5787 - 68
Galeotti N.Poncet J.Chiche L.Jouin P. J. Org. Chem. 1993, 58: 5370
References
According to the WHO protocol (see, http://www.who.int/csr/drugresist/malaria/en/markiii.pdf).
54Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC number 616240). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033, e-mail: teched@chemcrys.cam.ac.uk].