Zusammenfassung
Studienziel: Ziel der Untersuchung ist der Vergleich der Stabilität implantierter Pedikelschrauben in konventioneller und fluoroskopisch-navigierter Technik. Methode: Bei 10 Wirbelsäulenpräparaten unterschiedlicher Leichen wurden Pedikelschrauben eingebracht. Wir implantierten jeweils 10 Schrauben in konventioneller (Gruppe 1) sowie in fluoroskopisch-navigierter Technik (Gruppe 2). Anschließend erfolgte die Bestimmung der axialen Ausrisskraft an der Universalprüfmaschine. Ergebnisse: Die durchschnittliche Ausrisskraft betrug in Gruppe 1 232 N (60-600 N) und in Gruppe 2 353 N (112-625 N). Der Unterschied war signifikant (p=0,0425). Schlussfolgerung: Im Vergleich zur konventionellen Technik lässt sich durch fluoroskopisch-navigierte Pedikelschraubenimplantation die Stabilität erhöhen.
Abstract
Aim: Aim of the study was to compare pullout resistance of pedicle screws after conventional and fluoroscopic computer-assisted implantation in the cadaveric thoracic and lumbar spine. Methods: Pedicle screws were inserted in a total of 10 vertebrae of different human specimens: 10 screws were placed using conventional technique (group 1) and 10 screws were inserted with fluoroscopic computer-assisted system contralaterally (group 2). Then pedicle screws were evaluated for biomechanical axial pullout resistance. Results: Mean pullout force was 232 N (range 60-600 N) in group 1 and 353 N (range 112-625 N) in group 2. The difference was significant (p=0,0425). Conclusion: Fluoroscopic navigated implantation of pedicle screws increases the pullout strength in thoracic and lumbar cadaveric spines as compared with conventional methods.
Schlüsselwörter
Pedikelschrauben - computergestützte Chirurgie - Fluoroskopie - mechanische Stabilität
Key words
Pedicle screw - computer-assisted surgery - fluoroscopy - mechanical stability
Literatur
1
Amiot LP, Lang K, Putzier M. et al .
Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine.
Spine.
2000;
25
606-614
2
Ashmann RB, Bechtold JE, Edwards WT.
In-vitro spinal arthrodesis implant mechanical testing protocols.
J Spin Dis.
1989;
275
3
Choi WW, Green BA, Levi AD.
Computer-assisted fluoroscopic targeting system for pedicle screw insertion.
Neurosurgery.
2000;
47
872-878
4
Coe JD, Warden KE, Herzig MA. et al .
Influence of bone mineral density on the fixation of thoracolumbar implants.
Spine.
1990;
15
903-907
5
Esses SI, Sachs BL, Dreyzin V.
Complications associated with the technique of pedicle screw fixation.
Spine.
1993;
18
2231-2239
6
Gertzbein SD, Robbins SE.
Accuracy of pedicular screw placement in vivo.
Spine.
1990;
15
11-14
7
James C, Goh H, Ang J, Bose K.
Effect of preservation medium on the mechanical properties of cat bones.
Acta Orthop Scand.
1989;
60
465-467
8
Kamimura M, Ebara S, Itoh H. et al .
Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: Laboratory test and clinical study.
J Orthop Sci.
1999;
4
197-206
9
Kim KD, Patrick Johnson J, Bloch BO. et al .
Computer-assisted thoracic pedicle screw placement: An in vitro feasibility study.
Spine.
2001;
26
360-364
10
Laine T, Lund T, Ylikoski M. et al .
Accuracy of pedicle screw insertion with and without computer assistance: A randomised controlled clinical study in 100 consecutive patients.
Eur Spine J.
2000;
9
235-240
11
Merloz P, Tonetti J, Pittet L. et al .
Pedicle screw placement using image-guided techniques.
Clin Orthop.
1998;
354
39-48
12
Mirza SK, Wiggins GC, Kuntz C, York JE, Bellabarba C, Knonodi MA, Chapman JR, Shaffrey CI.
Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study.
Spine.
2003;
28
402-413
13
Reichle E, Sellenschloh K, Morlock M, Eggers C.
Einbringung von Pedikelschrauben unter Einsatz unterschiedlicher Unterstützungsverfahren.
Orthopäde.
2002;
31
368-371
14
Sarzier JS, Evans AJ, Cahill DW.
Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines.
J Neurosurg.
2002;
96
309-312
15
Schlenzka D, Laine T, Lund T.
Computergestützte Wirbelsäulenchirurgie.
Orthopäde.
2000;
29
658-669
16
Schnake KJ, König B, Berth U, Schroeder RJ, Kandziora F, Stöckle U, Raschke M, Haas NP.
Genauigkeit der CT-basierten Navigation von Pedikelschrauben an der Brustwirbelsäule im Vergleich zur konventionellen Technik.
Unfallchirurg.
2004;
107
104-112
17
Soshi S, Shiba R, Kondo H, Murota K.
An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine.
Spine.
1991;
16
1335-1341
18
Steinmann JC, Herkowitz HN, El-Kommos H. et al .
Spinal pedicle fixation: confirmation of an image-based technique for screw placement.
Spine.
1993;
18
1856-1861
19
Weinstein JN, Rydevik BL, Rauschning W.
Anatomic and technical considerations of pedicle screw fixation.
Clin Orthop.
1992;
284
34-36
20
Weinstein JN, Spratt KF, Spengler D. et al .
Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement.
Spine.
1988;
13
1012-1018
21
Wiltse LL.
History of pedicle screw fixation of the spine.
Spine State Art Rev.
1992;
6
1-10
22
World Health Organisation Technical report .
Assessment of fracture risk and its application to screening for postmenopausal osteoporosis,.
1994;
, series 843
23
Youkilis AS, Quint DJ, McGillicuddy JE. et al .
Stereotactic navigation for placement of pedicle screws in the thoracic spine.
Neurosurgery.
2001;
48
771-778
Korrespondenzadresse
Dr. O. Linhardt
Orthopädische Klinik der Universität Regensburg
Postfach 1134, 93074 Bad Abbach
Telefon: +49940518 48 38
Fax: +49940518 29 20
eMail: o.linhardt@asklepios.de