References and Notes
1a
Kitazume T.
Yamazaki T.
Top. Curr. Chem.
1997,
193:
91
1b
Percy JM.
Top. Curr. Chem.
1997,
193:
131
1c
Banks RE.
Smart BE.
Tatlow JC.
Organofluorine Chemistry: Principles and Commercial Applications
Plenum;
New York:
1994.
1d
Hiyama T.
Organofluorine Compounds: Chemistry and Application
Springer;
New York:
2000.
1e
Filler R.
Kobayashi Y.
Biochemical Aspects of Fluorine Chemistry
Elsevier Biomedical Press and Kodansha Ltd.;
New York:
1982.
1f
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
John Wiley and Sons;
New York:
1991.
1g
Welch JT.
Tetrahedron
1987,
43:
3123
1h
Chambers RD.
Fluorine in Organic Chemistry
Blackwell Publishing Ltd.;
Oxford:
2004.
2a
Tsuji J.
Palladium Reagents and Catalysts
John Wiley and Sons;
Chichester:
2004.
2b
Godleski S. In Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Semmelhack MF.
Pergamon;
Oxford:
1991.
p.585
2c
Consiglio G.
Waymouth RM.
Chem. Rev.
1989,
89:
257
2d
Tsuji J.
Minami I.
Acc. Chem. Res.
1987,
20:
140
2e
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
2f
Hayashi T.
J. Organomet. Chem.
1999,
576:
195
2g
Johannsen M.
Jørgensen KA.
Chem. Rev.
1998,
1689
2h
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
2i
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
2j
Dai L.-X.
Tu A.
You S.-L.
Deng W.-P.
Hou X.-L.
Acc. Chem. Res.
2003,
36:
659
3a
Konno T.
Takehana T.
Ishihara T.
Yamanaka H.
Org. Biomol. Chem.
2004,
2:
93
3b
Okano T.
Matsubara H.
Kusukawa T.
Fujita M.
J. Organomet. Chem.
2003,
676:
43
3c
Hanzawa Y.
Ishizuka S.
Ito H.
Kobayashi Y.
Taguchi T.
J. Chem. Soc., Chem. Commun.
1990,
394
3d
Hanzawa Y.
Ishizawa S.
Kobayashi Y.
Chem. Pharm. Bull.
1988,
36:
4209
3e
Konno T.
Nagata K.
Ishihara T.
Yamanaka H.
J. Org. Chem.
2002,
67:
1768
3f
Konno T.
Ishihara T.
Yamanaka H.
Tetrahedron Lett.
2000,
41:
8467
3g
Konno T.
Takehana T.
Mishima M.
Ishihara T.
J. Org. Chem.
2006,
71:
3545
3h
Fish PV.
Reddy SP.
Lee CH.
Johnson WS.
Tetrahedron Lett.
1992,
33:
8001
4a
Takagi Y.
Kashiwagi M.
Kihara H.
Itoh T.
Tetrahedron Lett.
1999,
40:
2801
4b
Takagi Y.
Nakatani T.
Itoh T.
Oshiki T.
Tetrahedron Lett.
2000,
41:
7889
4c
Normat JF.
Fpulon JP.
Masure D.
Sauvetre R.
Villieras J.
Synthesis
1975,
122
5a
Hayashi T.
Kawatsura M.
Uozumi Y.
Chem. Commun.
1997,
561
5b
Hayashi T.
Kawatsura M.
Uozumi Y.
J. Am. Chem. Soc.
1998,
120:
1681
5c
Prétôt R.
Pfaltz A.
Angew. Chem. Int. Ed.
1998,
37:
323
5d
You S.-L.
Zhu X.-Z.
Luo Y.-M.
Hou X.-L.
Dai L.-X.
J. Am. Chem. Soc.
2001,
123:
7471
5e
Faller JW.
Wilt JC.
Parr J.
Org. Lett.
2004,
6:
1301
5f
Zheng W.-H.
Sun N.
Hou X.-L.
Org. Lett.
2005,
7:
5151
6
Typical Procedure for the Reaction of 1-Phenyl-2,3,3-trifluoroallyl Acetate (3A) with Diethyl Methylmalonate (6a, Entry 4)
To a solution of [PdCl(π-C3H5)]2 (18.3 mg, 0.050 mmol) and XANTPHOS (57.9 mg, 0.100 mmol) in toluene (5 mL) was added 2,3,3-trifluoro-1-phenylallyl acetate (230 mg, 1.00 mmol). A solution of sodium salt of diethyl methylmalonate prepared from diethyl methylmalonate (261 mg, 1.50 mmol) and NaH (33.6 mg, 1.40 mmol) in THF (1.5 mL) was added dropwise at 0 °C, and the resultant mixture was heated up to 60 °C and stirred for 12 h. Then, Et2O and H2O were added to the reaction mixture, and the organic phase was separated, and dried over MgSO4 and evaporated. The regioselectivity was determined from the 1H NMR spectrum of the crude materials, then determined to be 99:1. Analytically pure samples were obtained by silica gel column chromatog-raphy (hexane-Et2O, 98:2) to give 306 mg (89%) of alkylation product 4Aa. 1H NMR (500 MHz, CDCl3): δ = 1.13 (t, J = 7.1 Hz, 3 H), 1.27 (t, J = 7.3 Hz, 3 H), 1.58 (d, J
HF = 1.8 Hz, 3 H), 3.99-4.09 (m, 2 H), 4.23 (qd, J = 7.1 Hz, J
HF = 0.9 Hz, 2 H), 4.60 (ddd, J
HF = 35.5, 3.0, 1.6 Hz, 1 H), 7.27-7.38 (5 H, m). 13C NMR (125 MHz, CDCl3): δ = 13.8, 13.9, 18.4, 45.4 (ddd, J
CF = 17.3, 4.8, 1.9 Hz), 57.6, 61.7, 61.9, 128.0, 128.4, 129.1 (ddd, J
CF = 240.9, 48.9, 17.3 Hz), 129.8, 135.4, 153.1 (ddd, J
CF = 47.1, 287.9, 277.3 Hz), 169.9, 170.4. 19F NMR (470 MHz, CDCl3): δ = -13.5 (ddd, J
FF = 109.4, 34.5 Hz, J
FH = 34.5 Hz), 44.2 (dd, J
FF = 109.4, 74.5 Hz), 58.0 (dd, J
FF = 34.5, 74.5 Hz).
7 Williams reported the reaction of methyl-substituted allyl acetate 1 and 2 (R = Me) gave branch selectivity by using P(t-Bu)3, however, we confirmed the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph) gave 60% branch selectivity: Acemoglu L.
Williams JMJ.
Adv. Synth. Catal.
2001,
343:
75
8
Kranenburg M.
van der Burgt YEM.
Kamer PCJ.
van Leeuwen PWNM.
Goubitz K.
Fraanje J.
Organometallics
1995,
14:
3018
9 XANTPHOS [9,9-dimethyl-4,5-bis(diphenylphos-phino)xanthene] gave 92% linear selectivity for the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph).