RSS-Feed abonnieren
DOI: 10.1055/s-2006-950414
Palladium-Catalyzed Regioselective Allylic Alkylation of 1-Aryl-2,3,3-trifluoroallyl Acetates
Publikationsverlauf
Publikationsdatum:
08. September 2006 (online)
Abstract
The palladium-catalyzed allylic alkylation of 1-aryl-2,3,3-trifluoroallyl acetates, which possess fluorinated olefinic parts, has been demonstrated; the reaction was effectively conducted by using P(t-Bu)3 or XANTPHOS as a ligand, and the reaction proceeded with a high regioselectivity.
Key words
fluorine - palladium catalyst - regioselectivity - allylic alkylation - phosphine ligand
-
1a
Kitazume T.Yamazaki T. Top. Curr. Chem. 1997, 193: 91 -
1b
Percy JM. Top. Curr. Chem. 1997, 193: 131 -
1c
Banks RE.Smart BE.Tatlow JC. Organofluorine Chemistry: Principles and Commercial Applications Plenum; New York: 1994. -
1d
Hiyama T. Organofluorine Compounds: Chemistry and Application Springer; New York: 2000. -
1e
Filler R.Kobayashi Y. Biochemical Aspects of Fluorine Chemistry Elsevier Biomedical Press and Kodansha Ltd.; New York: 1982. -
1f
Welch JT.Eswarakrishnan S. Fluorine in Bioorganic Chemistry John Wiley and Sons; New York: 1991. -
1g
Welch JT. Tetrahedron 1987, 43: 3123 -
1h
Chambers RD. Fluorine in Organic Chemistry Blackwell Publishing Ltd.; Oxford: 2004. -
2a
Tsuji J. Palladium Reagents and Catalysts John Wiley and Sons; Chichester: 2004. -
2b
Godleski S. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I.Semmelhack MF. Pergamon; Oxford: 1991. p.585 -
2c
Consiglio G.Waymouth RM. Chem. Rev. 1989, 89: 257 -
2d
Tsuji J.Minami I. Acc. Chem. Res. 1987, 20: 140 -
2e
Helmchen G.Pfaltz A. Acc. Chem. Res. 2000, 33: 336 -
2f
Hayashi T. J. Organomet. Chem. 1999, 576: 195 -
2g
Johannsen M.Jørgensen KA. Chem. Rev. 1998, 1689 -
2h
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
2i
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
2j
Dai L.-X.Tu A.You S.-L.Deng W.-P.Hou X.-L. Acc. Chem. Res. 2003, 36: 659 -
3a
Konno T.Takehana T.Ishihara T.Yamanaka H. Org. Biomol. Chem. 2004, 2: 93 -
3b
Okano T.Matsubara H.Kusukawa T.Fujita M. J. Organomet. Chem. 2003, 676: 43 -
3c
Hanzawa Y.Ishizuka S.Ito H.Kobayashi Y.Taguchi T. J. Chem. Soc., Chem. Commun. 1990, 394 -
3d
Hanzawa Y.Ishizawa S.Kobayashi Y. Chem. Pharm. Bull. 1988, 36: 4209 -
3e
Konno T.Nagata K.Ishihara T.Yamanaka H. J. Org. Chem. 2002, 67: 1768 -
3f
Konno T.Ishihara T.Yamanaka H. Tetrahedron Lett. 2000, 41: 8467 -
3g
Konno T.Takehana T.Mishima M.Ishihara T. J. Org. Chem. 2006, 71: 3545 -
3h
Fish PV.Reddy SP.Lee CH.Johnson WS. Tetrahedron Lett. 1992, 33: 8001 -
4a
Takagi Y.Kashiwagi M.Kihara H.Itoh T. Tetrahedron Lett. 1999, 40: 2801 -
4b
Takagi Y.Nakatani T.Itoh T.Oshiki T. Tetrahedron Lett. 2000, 41: 7889 -
4c
Normat JF.Fpulon JP.Masure D.Sauvetre R.Villieras J. Synthesis 1975, 122 -
5a
Hayashi T.Kawatsura M.Uozumi Y. Chem. Commun. 1997, 561 -
5b
Hayashi T.Kawatsura M.Uozumi Y. J. Am. Chem. Soc. 1998, 120: 1681 -
5c
Prétôt R.Pfaltz A. Angew. Chem. Int. Ed. 1998, 37: 323 -
5d
You S.-L.Zhu X.-Z.Luo Y.-M.Hou X.-L.Dai L.-X. J. Am. Chem. Soc. 2001, 123: 7471 -
5e
Faller JW.Wilt JC.Parr J. Org. Lett. 2004, 6: 1301 -
5f
Zheng W.-H.Sun N.Hou X.-L. Org. Lett. 2005, 7: 5151 - 7 Williams reported the reaction of methyl-substituted allyl acetate 1 and 2 (R = Me) gave branch selectivity by using P(t-Bu)3, however, we confirmed the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph) gave 60% branch selectivity:
Acemoglu L.Williams JMJ. Adv. Synth. Catal. 2001, 343: 75 - 8
Kranenburg M.van der Burgt YEM.Kamer PCJ.van Leeuwen PWNM.Goubitz K.Fraanje J. Organometallics 1995, 14: 3018
References and Notes
Typical Procedure for the Reaction of 1-Phenyl-2,3,3-trifluoroallyl Acetate (3A) with Diethyl Methylmalonate (6a, Entry 4) To a solution of [PdCl(π-C3H5)]2 (18.3 mg, 0.050 mmol) and XANTPHOS (57.9 mg, 0.100 mmol) in toluene (5 mL) was added 2,3,3-trifluoro-1-phenylallyl acetate (230 mg, 1.00 mmol). A solution of sodium salt of diethyl methylmalonate prepared from diethyl methylmalonate (261 mg, 1.50 mmol) and NaH (33.6 mg, 1.40 mmol) in THF (1.5 mL) was added dropwise at 0 °C, and the resultant mixture was heated up to 60 °C and stirred for 12 h. Then, Et2O and H2O were added to the reaction mixture, and the organic phase was separated, and dried over MgSO4 and evaporated. The regioselectivity was determined from the 1H NMR spectrum of the crude materials, then determined to be 99:1. Analytically pure samples were obtained by silica gel column chromatog-raphy (hexane-Et2O, 98:2) to give 306 mg (89%) of alkylation product 4Aa. 1H NMR (500 MHz, CDCl3): δ = 1.13 (t, J = 7.1 Hz, 3 H), 1.27 (t, J = 7.3 Hz, 3 H), 1.58 (d, J HF = 1.8 Hz, 3 H), 3.99-4.09 (m, 2 H), 4.23 (qd, J = 7.1 Hz, J HF = 0.9 Hz, 2 H), 4.60 (ddd, J HF = 35.5, 3.0, 1.6 Hz, 1 H), 7.27-7.38 (5 H, m). 13C NMR (125 MHz, CDCl3): δ = 13.8, 13.9, 18.4, 45.4 (ddd, J CF = 17.3, 4.8, 1.9 Hz), 57.6, 61.7, 61.9, 128.0, 128.4, 129.1 (ddd, J CF = 240.9, 48.9, 17.3 Hz), 129.8, 135.4, 153.1 (ddd, J CF = 47.1, 287.9, 277.3 Hz), 169.9, 170.4. 19F NMR (470 MHz, CDCl3): δ = -13.5 (ddd, J FF = 109.4, 34.5 Hz, J FH = 34.5 Hz), 44.2 (dd, J FF = 109.4, 74.5 Hz), 58.0 (dd, J FF = 34.5, 74.5 Hz).
9XANTPHOS [9,9-dimethyl-4,5-bis(diphenylphos-phino)xanthene] gave 92% linear selectivity for the reaction of 1-phenyl-2-propenyl acetate 1 (R = Ph).