Subscribe to RSS
DOI: 10.1055/s-2006-951535
Sterically Modified Chiral (Salen)Cr(III) Complexes - Efficient Catalysts for the Oxo-Diels-Alder Reaction between Glyoxylates and Cyclohexa-1,3-diene
Publication History
Publication Date:
23 November 2006 (online)
Abstract
A group of chiral [(salen)Cr(III)]+BF4 - complexes, with enhanced steric hindrance in 3,3′-positions of salicylidene moiety, has been synthesized and applied for the oxo-Diels-Alder reaction of alkyl glyoxylates with cyclohexa-1,3-diene. A readily accessible complex that bears bulky adamanthyl substituents revealed its potential, leading to the cycloadducts with excellent selectivity (up to endo/exo 99:1, 98% ee), considerably better than the classic Jacobsen catalyst.
Key words
asymmetric catalysis - glyoxylates - hetero-Diels-Alder reaction - salen-chromium complexes
- 1
Yoon TP.Jacobsen EN. Science 2003, 299: 1691 - For recent reviews, see:
-
2a
Brunel JM. Chem. Rev. 2005, 105: 857 -
2b
Chen Y.Yekta S.Yudin AK. Chem. Rev. 2003, 103: 3155 - 3 For recent review, see:
Berthod M.Mignani G.Woodward G.Lemaire M. Chem. Rev. 2005, 105: 1801 - For recent reviews, see:
-
4a
McGarrigle EM.Gilheany DG. Chem. Rev. 2005, 105: 1564 -
4b
Larrow JF.Jacobsen EN. Top. Organomet. Chem. 2004, 6: 123 -
4c
Cozzi PG. Chem. Soc. Rev. 2004, 33: 410 -
4d
Canali L.Sherrington DC. Chem. Soc. Rev. 1999, 28: 85 -
4e
Ito YN.Katsuki T. Bull. Chem. Soc. Jpn. 1999, 72: 603 - For recent reviews, see:
-
5a
Desimoni G.Faita G.Quadrelli P. Chem. Rev. 2003, 103: 3119 -
5b
Rechavi D.Lemaire M. Chem. Rev. 2002, 102: 3467 -
5c
Jørgensen KA.Johannsen M.Yao S.Audrain H.Thornauge J. Acc. Chem. Res. 1999, 32: 605 -
5d
Ghosh AK.Mathivanan P.Cappiello J. Tetrahedron: Asymmetry 1998, 9: 1 - For recent reviews, see:
-
6a
Cycloaddition Reaction in Organic Synthesis
Kobayashi S.Jørgensen KA. Wiley-VCH; Weinheim: 2002. -
6b
Jørgensen KA. Angew. Chem. Int. Ed. 2000, 39: 2398 -
7a
Johannsen M.Jørgensen KA. J. Org. Chem. 1995, 60: 5757 -
7b
Johannsen M.Jørgensen KA. Tetrahedron 1996, 52: 7321 -
7c
Johannsen M.Jørgensen KA. J. Chem. Soc., Perkin Trans. 2 1997, 52: 1183 -
8a
Oi S.Terada E.Ohuchi K.Kato T.Tachibana Y.Inoue Y. J. Org. Chem. 1999, 64: 8660 -
8b
Bolm C.Simić O. J. Am. Chem. Soc. 2001, 123: 3830 -
8c
Mikami K.Aikawa K.Yusa Y.Hatano M. Org. Lett. 2002, 4: 91 -
8d
Mikami K.Aikawa K.Yusa Y. Org. Lett. 2002, 4: 95 -
8e
Becker JJ.Van Orden LJ.White PS.Gagne MR. Org. Lett. 2002, 4: 727 -
8f
Bolm C.Verrucci M.Simić O.Cozzi PG.Raabe G.Okamura H. Chem. Commun. 2003, 2826 -
8g
Doherty S.Knight JG.Hardacre C.Lou H.-K.Newman CR.Rath RK.Campbell S.Nieuwenhuyzen M. Organometallics 2004, 23: 6127 - 9
Achmatowicz O.Jurczak J.Pyrek JS. Tetrahedron 1976, 32: 2113 -
10a
Garoflo A.Hursthouse MB.Malik KMA.Olivio HF.Roberts SM.Sik V. J. Chem. Soc., Perkin Trans. 1 1994, 1311 -
10b
Hibbs DE.Hursthouse MB.Knutsen LJS.Malik KMA.Olivo HF. Acta. Chem. Scand. 1995, 49: 122 -
10c
Olivio HF.Yu J. J. Chem. Soc., Perkin Trans. 1 1998, 391 -
10d
Molander GA.Harris CR. J. Org. Chem. 1997, 62: 2944 - 11
Kwiatkowski P.Asztemborska M.Caille J.-C.Jurczak J. Adv. Synth. Catal. 2003, 345: 506 - 12
Kwiatkowski P.Chaadaj W.Jurczak J. Synlett 2005, 2301 -
13a
Pietikäinen P. Tetrahedron 2000, 56: 417 -
13b
Mascarenhas CM.Miller SP.White PS.Morken JP. Angew. Chem. Int. Ed. 2001, 40: 601 -
13c
Huang Y.Iwama T.Rawal VH. J. Am. Chem. Soc. 2002, 124: 5950 -
13d
Liang S.Bu XR. J. Org. Chem. 2002, 67: 2702 -
13e
Gaquere A.Liang S.Hsu F.-L.Bu XR. Tetrahedron: Asymmetry 2002, 13: 2089 - A bulky adamanthyl substituent in the 3-position turned out to be essential in highly stereoselective HDA reaction catalyzed by tridentate chromium(III) complexes:
-
15a
Dossetter AG.Jamison TF.Jacobsen EN. Angew. Chem. Int. Ed. 1999, 38: 2398 -
15b
Gademann K.Chavez DE.Jacobsen EN. Angew. Chem. Int. Ed. 2002, 41: 3059 - Catalyst 5g was synthesized from appropriate ligand according to Jacobsen procedure:
-
17a
Martínez LE.Leighton JL.Carsten DH.Jacobsen EN. J. Am. Chem. Soc. 1995, 117: 5897 -
17b
Schaus SE.Brånalt J.Jacobsen EN. J. Org. Chem. 1998, 63: 403 - Ligand precursor of 5g was obtained in three steps similar to procedures known from literature:
-
18a
Ref. 15.
-
18b
Larrow JF.Jacobsen EN. J. Org. Chem. 1994, 59: 1939 -
20a
Kwiatkowski P.Chaadaj W.Malinowska M.Asztemborska M.Jurczak J. Tetrahedron: Asymmetry 2005, 16: 2959 -
20b
Kwiatkowski P.Chaadaj W.Jurczak J. Tetrahedron 2006, 62: 5116
References and Notes
General Procedure for Cycloaddition of Cyclohexa-1,3-diene to Alkyl Glyoxylates.
To a solution of catalyst 5a-g (0.5-5 mol%) and alkyl glyoxylate (1 mmol, freshly distilled from P2O5) in toluene (1 mL) cyclohexa-1,3-diene (150 µL, 1.5 mmol) was added, and the solution was stirred for 24 h at r.t. Afterwards the reaction mixture was subjected to chromatography (hexanes-EtOAc, 9:1).
Analytical Data for Salen Ligand Precursor of 5g.
Mp 247-248 °C. 1H NMR (500 MHz, CDCl3): δ = 1.23 (s, 18 H), 1.15-1.35 (m, 2 H), 1.40-1.50 (m, 2 H), 1.65-2.00 (m, 10 H), 2.04-2.09 (m, 6 H), 2.13-2.18 (m, 12 H), 3.26-3,34 (m, 2 H), 6.96 (d, J = 2.2 Hz, 2 H), 7.24 (d, J = 2.2 Hz, 2 H), 8.29 (s, 2 H), 13.64 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 24.4, 29.2, 31.4, 33.3, 34.1, 37.2, 37.2, 40.4, 72.4, 117.9, 126.0, 126.7, 136.6, 139.9, 158.2, 166.0. [α]D
25 +325.7 (c 0.58, CHCl3). IR (KBr): 2950, 2905, 2850, 1625, 1598 cm-1. Anal. Calcd for C48H66N2O2: C, 82.00; H, 9.46; N 3.98. Found: C, 82.06; H, 9.39, N, 3.82. Catalyst 5g: HRMS: m/z calcd for C48H64N2O2Cr [M - BF4]+: 752.4367; found: 752.4392.
Analytical Data for Cycloadducts 3.
Compound 3a (ref. 11): GC (column β-dex 120, i.d. 30 m × 0.25 mm, carrier gas - nitrogen 100 kPa, oven temp. 150 °C): t
R1[
exo-
3a
] = 29.9, t
R2[
exo-
3a
] = 30.7, t
R[
(
3
S
)-
endo-
3a
] = 33.1, t
R[
(
3
R
)-
endo-
3a
] = 34.1 min.
Compound 3b (ref. 7a,b and 8a): GC (column β-dex 120, i.d. 30 m × 0.25 mm, carrier gas - nitrogen 100 kPa, oven temp. 140 °C): t
R1[
exo-
3b
] = 18.8, t
R2[
exo-
3b
] = 19.5, t
R[
(
3
S
)-
endo-
3b
] = 21.2, t
R[
(
3
R
)-
endo-
3b
] = 21.8 min.
Compound 3c: GC (column β-dex 120, i.d. 30 m × 0.25 mm, carrier gas - nitrogen 100 kPa, oven temp. 140 °C):
t
R1[
exo-
3c
] = 19.8, t
R2[
exo-
3c
] = 20.5, t
R[
(
3
S
)-
endo-
3c
] = 21.7,
t
R[
(
3
R
)-
endo-
3c
] = 22.6 min. 1H NMR for endo-
3c (500 MHz, CDCl3): δ = 1.21 (d, J = 1.8 Hz, 3 H), 1.22 (d, J = 1.8 Hz, 3 H), 1.26-1.42 (m, 2 H), 1.71-1.77 (m, 1 H), 2.03-2.10 (m, 1 H), 3.06-3.10 (m, 1 H), 4.26 (d, J = 1.8 Hz, 1 H), 4.56-4.59 (m, 1 H), 5.01 (dq, J = 1.8, 1.8 Hz, 1 H), 6.23-6.28 (m, 1 H), 6.51-6.55 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 20.9, 21.7, 25.7, 33.2, 66.4, 68.0, 74.2, 130.4, 134.7, 171.7.
Compound 3d: GC (column β-dex 120, i.d. 30 m × 0.25 mm, carrier gas - nitrogen 100 kPa, oven temp. 150 °C):
t
R1[
exo-
3d
] = 15.5, t
R2[
exo-
3d
] = 15.9, t
R[
(
3
S
)-
endo-
3d
] = 16.2,
t
R[
(
3
R
)-
endo-
3d
] = 16.7 min. 1H NMR for endo-
3d (500 MHz, CDCl3): δ = 1.18-1.28 (m, 1 H), 1.29 (s, 9 H), 1.81-1.87 (m, 1 H), 1.93-2.02 (m, 1 H), 2.16-2.24 (m, 1 H), 2.46-2.53 (m, 1 H), 4.51 (d, J = 7.3 Hz, 1 H), 4.59-4.63 (m, 1 H), 5.89-5.94 (m, 1 H), 6.18-6.23 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 18.1, 23.4, 27.9, 39.7, 70.7, 71.5, 75.5, 122.2, 136.0, 175.4.