References and Notes
<A NAME="RD24206ST-1">1</A>
Zaragoza F.
Dörwald X.
Organic Synthesis on Solid Phase
Vol. 2:
Wiley-VCH;
Weinheim:
2002.
<A NAME="RD24206ST-2A">2a</A>
Boger DL.
Desharnais J.
Capps K.
Angew. Chem. Int. Ed.
2003,
42:
4138
<A NAME="RD24206ST-2B">2b</A>
An H.
Dan Cook P.
Chem. Rev.
2000,
100:
3311
<A NAME="RD24206ST-2C">2c</A>
Nefzi A.
Ostresch JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
<A NAME="RD24206ST-3A">3a</A>
Kirschning A.
Monenschein A.
Wittemberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
<A NAME="RD24206ST-3B">3b</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
<A NAME="RD24206ST-4">4</A>
Collins I.
J. Chem. Soc., Perkin Trans. 1
2000,
2845
<A NAME="RD24206ST-5">5</A>
Relative base strength of supported bases used in this study; the pKa values reported
for the conjugated acids of their corresponding non-supported analogues are: TBD:
25.44 (MeCN, 25 °C), BEMP: 27.63 (MeCN, 25 °C); see ref. 6a. Supported reagents employed
in this work were purchased from Fluka (PS-BEMP), Argonaut (PS-TBD) and Silicycle
(Si-TBD).
<A NAME="RD24206ST-6A">6a</A>
Schwesinger R.
Willaredt J.
Schemper H.
Keller M.
Schmitt D.
Fritz H.
Chem. Ber.
1994,
127:
2435
<A NAME="RD24206ST-6B">6b</A>
Bensa D.
Constantieux T.
Rodriguez J.
Synthesis
2004,
923
<A NAME="RD24206ST-6C">6c</A>
Graybill TL.
Thomas S.
Wang MA.
Tetrahedron Lett.
2002,
43:
5305
<A NAME="RD24206ST-6D">6d</A>
Adams G.
Tetrahedron Lett.
2003,
44:
5041
<A NAME="RD24206ST-7A">7a</A>
Alhambra C.
Castro J.
Chiara JL.
Fernández E.
Fernández Mayorales A.
Fiandos JM.
García-Ochoa S.
Martín Ortega MD.
Tetrahedron Lett.
2001,
42:
6675
<A NAME="RD24206ST-7B">7b</A>
Xu W.
Mohan R.
Morrissey M.
Bioorg. Med. Chem. Lett.
1998,
8:
1089
<A NAME="RD24206ST-7C">7c</A>
Ley SV.
Massi A.
J. Chem. Soc., Perkin Trans. 1
2000,
3645
<A NAME="RD24206ST-7D">7d</A>
Caldarelli M.
Habermann J.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1999,
107
<A NAME="RD24206ST-7E">7e</A>
Baxendale IR.
Ley SV.
Bioorg. Med. Chem. Lett.
2000,
10:
1983
<A NAME="RD24206ST-7F">7f</A>
McComas W.
Chen L.
Kim K.
Tetrahedron Lett.
2000,
41:
3573
<A NAME="RD24206ST-7G">7g</A>
Schwesinger R.
Nachr. Chem., Tech. Lab.
1990,
38:
1214
<A NAME="RD24206ST-8A">8a</A>
Subba Rao YV.
De Vos DE.
Jacobs PA.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2261
<A NAME="RD24206ST-8B">8b</A>
Fringuelli F.
Pizzo F.
Vittoriani C.
Vaccaro L.
Chem. Commun.
2004,
2756
<A NAME="RD24206ST-8C">8c</A>
Xu W.
Mohan R.
Morrissey M.
Tetrahedron Lett.
1997,
38:
7337
<A NAME="RD24206ST-8D">8d</A>
Organ MG.
Dixon CE.
Biotechnol. Bioeng. Comb. Chem.
2000,
71:
71
<A NAME="RD24206ST-8E">8e</A>
Iijima K.
Fukuda W.
Tomoi M.
J. Macromol. Sc., Part A: Pure Appl. Chem.
1992,
29:
249
<A NAME="RD24206ST-8F">8f</A>
Tamura Y.
Fukuda W.
Tomoi M.
Synth. Commun.
1994,
24:
2907
<A NAME="RD24206ST-8G">8g</A>
Boisnard S.
Chastanet J.
Zhu J.
Tetrahedron Lett.
1999,
7469
<A NAME="RD24206ST-8H">8h</A>
Chiara JL.
Encinas L.
Díaz B.
Tetrahedron Lett.
2005,
46:
2445
<A NAME="RD24206ST-9">9</A>
Ye W.
Xu J.
Tan C.-T.
Tan C.-H.
Tetrahedron Lett.
2005,
46:
6875
<A NAME="RD24206ST-10A">10a</A>
Smith JT.
Zeiler HJ.
History and Introduction In Handbook of Experimental Pharmacology
Vol. 127:
Springer;
Berlin:
1998.
p.1-11
<A NAME="RD24206ST-10B">10b</A>
Pharmaceutical Substances: Synthesis, Patents, Applications
Kleemann A.
Engel J.
Thieme;
Stuttgart:
2001.
<A NAME="RD24206ST-10C">10c</A>
Riesbeck K.
J. Chemother.
2002,
14:
3
<A NAME="RD24206ST-10D">10d</A>
Milata V.
Claramunt R.
Elguero J.
Zalupski P.
Targets Heterocycl. Syst.
2000,
4:
167
<A NAME="RD24206ST-10E">10e</A>
Brown EM.
Reeves DS.
Antibiot. Chemother.
1997,
419
<A NAME="RD24206ST-10F">10f</A>
Hirai K.
Nippon Kagaku Ruoho Gakkai Zusshi
2005,
53:
349
<A NAME="RD24206ST-10G">10g</A>
Horton DA.
Bourne GT.
Smythe ML.
Chem. Rev.
2003,
103:
893
<A NAME="RD24206ST-11">11</A>
Sotelo E.
Fraiz N.
Yáñez M.
Laguna R.
Cano E.
Brea J.
Raviña E.
Bioorg. Med. Chem. Lett.
2002,
12:
1575
<A NAME="RD24206ST-12">12</A>
Amaresh RR.
Perumal PT.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1997,
36:
541
For publications related to the catalysis of Knoevenagel reaction by supported reagents,
see:
<A NAME="RD24206ST-13A">13a</A>
Isobe K.
Hoshi T.
Suzuki T.
Hagiwara H.
Mol. Divers.
2005,
9:
317
<A NAME="RD24206ST-13B">13b</A>
Zeng R.
Fu X.
Gong C.
Sui Y.
Ma X.
Yang X.
J. Mol. Catal. A: Chem.
2005,
229:
1 ; and references cited therein
<A NAME="RD24206ST-13C">13c</A>
Strohmeier GA.
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
621
<A NAME="RD24206ST-14A">14a</A>
Hadjeri M.
Mariotte AM.
Boomendjel A.
Chem. Pharm. Bull.
2001,
49:
1352
<A NAME="RD24206ST-14B">14b</A>
Baket D.
Sasaki H.
Kinoshita T.
Tsutsumi H.
Sakane K.
Bull. Chem. Soc. Jpn.
1996,
69:
1371
<A NAME="RD24206ST-15">15</A>
Brown DJ. In
The Pyridazines I, Chemistry of Heterocyclic Compounds
Taylor EC.
Wipf P.
Wiley;
New York:
2000.
p.56
<A NAME="RD24206ST-16">16</A>
Sundberg RJ.
Indoles
Academic Press;
London:
1996.
<A NAME="RD24206ST-17A">17a</A>
www.silicycle.com.
<A NAME="RD24206ST-17B">17b</A>
www.sigma-aldrich.com.
For publications related to the aza-Michael reaction by supported reagents, see:
<A NAME="RD24206ST-18A">18a</A>
Fetterly BM.
Jana NK.
Verkade JG.
Tetrahedron
2006,
62:
440
<A NAME="RD24206ST-18B">18b</A>
Bartoli G.
Bartolacci M.
Giuliani A.
Marcantoni E.
Massaccessi M.
Torregiani E.
J. Org. Chem.
2005,
70:
169
<A NAME="RD24206ST-19">19</A>
Representative Procedure for the Alkylation-Knoevenagel (Method A) or Aza-Michael-Knoevenagel
(Method B) Sequences: In a coated Kimble vial was charged a mixture of the scaffold A1-A3 (0.60 mmol) in the appropriate solvent [THF (3 mL) for A1 or A3, toluene for A2]. The supported organic base (1.5 mmol of PS-TBD 2 for method A, 0.12 mmol for method B) and the alkyl halide (0.66 mmol; method A)
or the Michael acceptor (0.72 mmol; method B) were added at the appropriate temperature
(40 °C for A1 and A3, r.t. for A2 in method A, 60 °C for all scaffolds in method B). The sample was vortexed for 30
min to give the corresponding N-blocked adduct. Addition of the appropriate malonic
acid derivative (1.1 equiv, stirring for 4-14 h; see Figure
[4]
) to the adduct at the appropriate temperature (40 °C for A1, 60 °C for A2, r.t. for A3 in method A; 50 °C, 60 °C and r.t. for A1, A2 and A3, respectively in method B) in the corresponding solvent, led to the Knoevenagel product
after simple filtration of the supported reagents by a fritted syringe. Evaporation
of the solvent and purification by a parallel short chromatographic filtration (on
silica gel) employing a vacuum manifold (Visiprep®) to remove the small excess of
malonic acid derivative afforded pure samples that were characterised by spectroscopic
and analytical data.
<A NAME="RD24206ST-20">20</A>
Complete details of the synthesis and spectral characteristics of the compounds obtained
will be published elsewhere in a full paper. All compounds gave satisfactory spectral
data (1H NMR, 13C NMR, FTIR, MS). Yields given correspond to the isolated pure compounds. Chromatographic
filtration for all compounds was carried out using EtOAc-hexane (1:4) as eluent mixture.
Selected physical and spectral data for some compounds are as follows: A1B4D3: mp 218-219 °C (i-PrOH); yield: 70%. IR (KBr): 2233 (CN), 1709 (CO), 1665 (CO), 1599 (Ar) cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.12 (s, 1 H, CH), 8.88 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.50-7.64 (m, 1 H, Ar), 7.33-7.43 (m, 4 H, Ar), 7.19-7.23 (m,
3 H, Ar), 5.42 (s, 2 H, CH2), 4.34 (q, J = 7.2 Hz, 2 H, CH2), 1.35 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 358 (11) [M+], 285 (100), 91 (16). HRMS: m/z [M+] calcd for C22H18N2O3: 358.1317; found: 358.1316. A2B4D3: mp 130-131 °C (i-PrOH); yield: 67%. IR (KBr): 2209 (CN), 1747 (CO), 1578 (Ar), 1094 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.61 (s, 1 H, CH), 8.60 (s, 1 H, CH), 7.83-7.86 (m, 1 H, Ar), 7.27-7.35 (m,
6 H, Ar), 7.15-7.18 (m, 2 H, Ar), 5.41 (s, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 1.39 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 330 (75) [M+], 183 (1), 139 (2), 91 (100). A3B1D2: mp 220-221 °C (i-PrOH); yield: 79%. IR (KBr): 2229 (CN), 1727 (CO), 1659 (CO), 1580 (Ar), 1083 (COC)
cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.92 (s, 1 H, CH), 7.44-7.53 (m, 4 H, Ar + CH), 7.35-7.39 (m, 2 H, Ar), 3.92
(s, 3 H, CH3), 3.89 (s, 3 H, CH3). MS (70 eV): m/z (%) = 295 (100) [M+], 236 (100), 208 (35), 164 (30). HRMS: m/z [M+] calcd for C16H13N3O3: 295.0957; found: 295.0955. A1C4D2: mp 186-187 °C (i-PrOH); yield: 70%. IR (KBr): 2220 (CN), 1717 (CO), 1624 (CO), 1584 (Ar), 1093 (COC)
cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.10 (s, 1 H, CH), 8.81 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.70-7.74 (m, 1 H, Ar), 7.45-7.48 (m, 2 H, Ar), 4.54 (t, J = 6.7 Hz, 2 H, CH2), 4.15 (q, J = 7.2 Hz, 2 H, CH2), 3.86 (s, 3 H, CH3), 2.91 (t, J = 6.7 Hz, 2 H, CH2), 1.20 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 354 (16) [M+], 323 (4), 295 (100), 267 (16). A2C1D3: mp 153-154 °C (i-PrOH); yield: 80%. IR (KBr): 2215 (CN), 1721 (CO), 1589 (Ar), 1039 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.55 (s, 1 H, CH), 8.54 (s, 1 H, CH), 7.86 (dd, J = 1.6, 5.1 Hz, 1 H, Ar), 7.35-7.45 (m, 3 H, Ar), 4.57 (t, J = 6.9 Hz, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 2.94 (t, J = 6.9 Hz, 2 H, CH2), 1.35 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 293 (100) [M+], 253 (64), 225 (26), 179 (9). A3C2D1: mp 127-128 °C (i-PrOH); yield: 65%. IR (KBr): 2235 (CN), 1736 (COO), 1670 (CO), 1588 (Ar), 1092 (COC)
cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.51-7.55 (m, 5 H, Ar), 7.47 (s, 1 H, CH), 7.34 (s, 1 H, CH), 4.38 (t, J = 6.9 Hz, 2 H, CH2), 3.67 (s, 3 H, CH3), 2.90 (t, J = 6.9 Hz, 2 H, CH2). MS (70 eV): m/z (%) = 334 (22) [M+], 303 (16), 275 (26), 247 (50), 234 (100), 222 (25), 191 (23).