References and Notes
1
Zaragoza F.
Dörwald X.
Organic Synthesis on Solid Phase
Vol. 2:
Wiley-VCH;
Weinheim:
2002.
2a
Boger DL.
Desharnais J.
Capps K.
Angew. Chem. Int. Ed.
2003,
42:
4138
2b
An H.
Dan Cook P.
Chem. Rev.
2000,
100:
3311
2c
Nefzi A.
Ostresch JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
3a
Kirschning A.
Monenschein A.
Wittemberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
3b
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
4
Collins I.
J. Chem. Soc., Perkin Trans. 1
2000,
2845
5 Relative base strength of supported bases used in this study; the pKa values reported for the conjugated acids of their corresponding non-supported analogues are: TBD: 25.44 (MeCN, 25 °C), BEMP: 27.63 (MeCN, 25 °C); see ref. 6a. Supported reagents employed in this work were purchased from Fluka (PS-BEMP), Argonaut (PS-TBD) and Silicycle (Si-TBD).
6a
Schwesinger R.
Willaredt J.
Schemper H.
Keller M.
Schmitt D.
Fritz H.
Chem. Ber.
1994,
127:
2435
6b
Bensa D.
Constantieux T.
Rodriguez J.
Synthesis
2004,
923
6c
Graybill TL.
Thomas S.
Wang MA.
Tetrahedron Lett.
2002,
43:
5305
6d
Adams G.
Tetrahedron Lett.
2003,
44:
5041
7a
Alhambra C.
Castro J.
Chiara JL.
Fernández E.
Fernández Mayorales A.
Fiandos JM.
García-Ochoa S.
Martín Ortega MD.
Tetrahedron Lett.
2001,
42:
6675
7b
Xu W.
Mohan R.
Morrissey M.
Bioorg. Med. Chem. Lett.
1998,
8:
1089
7c
Ley SV.
Massi A.
J. Chem. Soc., Perkin Trans. 1
2000,
3645
7d
Caldarelli M.
Habermann J.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1999,
107
7e
Baxendale IR.
Ley SV.
Bioorg. Med. Chem. Lett.
2000,
10:
1983
7f
McComas W.
Chen L.
Kim K.
Tetrahedron Lett.
2000,
41:
3573
7g
Schwesinger R.
Nachr. Chem., Tech. Lab.
1990,
38:
1214
8a
Subba Rao YV.
De Vos DE.
Jacobs PA.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2261
8b
Fringuelli F.
Pizzo F.
Vittoriani C.
Vaccaro L.
Chem. Commun.
2004,
2756
8c
Xu W.
Mohan R.
Morrissey M.
Tetrahedron Lett.
1997,
38:
7337
8d
Organ MG.
Dixon CE.
Biotechnol. Bioeng. Comb. Chem.
2000,
71:
71
8e
Iijima K.
Fukuda W.
Tomoi M.
J. Macromol. Sc., Part A: Pure Appl. Chem.
1992,
29:
249
8f
Tamura Y.
Fukuda W.
Tomoi M.
Synth. Commun.
1994,
24:
2907
8g
Boisnard S.
Chastanet J.
Zhu J.
Tetrahedron Lett.
1999,
7469
8h
Chiara JL.
Encinas L.
Díaz B.
Tetrahedron Lett.
2005,
46:
2445
9
Ye W.
Xu J.
Tan C.-T.
Tan C.-H.
Tetrahedron Lett.
2005,
46:
6875
10a
Smith JT.
Zeiler HJ.
History and Introduction In Handbook of Experimental Pharmacology
Vol. 127:
Springer;
Berlin:
1998.
p.1-11
10b
Pharmaceutical Substances: Synthesis, Patents, Applications
Kleemann A.
Engel J.
Thieme;
Stuttgart:
2001.
10c
Riesbeck K.
J. Chemother.
2002,
14:
3
10d
Milata V.
Claramunt R.
Elguero J.
Zalupski P.
Targets Heterocycl. Syst.
2000,
4:
167
10e
Brown EM.
Reeves DS.
Antibiot. Chemother.
1997,
419
10f
Hirai K.
Nippon Kagaku Ruoho Gakkai Zusshi
2005,
53:
349
10g
Horton DA.
Bourne GT.
Smythe ML.
Chem. Rev.
2003,
103:
893
11
Sotelo E.
Fraiz N.
Yáñez M.
Laguna R.
Cano E.
Brea J.
Raviña E.
Bioorg. Med. Chem. Lett.
2002,
12:
1575
12
Amaresh RR.
Perumal PT.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1997,
36:
541
For publications related to the catalysis of Knoevenagel reaction by supported reagents, see:
13a
Isobe K.
Hoshi T.
Suzuki T.
Hagiwara H.
Mol. Divers.
2005,
9:
317
13b
Zeng R.
Fu X.
Gong C.
Sui Y.
Ma X.
Yang X.
J. Mol. Catal. A: Chem.
2005,
229:
1 ; and references cited therein
13c
Strohmeier GA.
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
621
14a
Hadjeri M.
Mariotte AM.
Boomendjel A.
Chem. Pharm. Bull.
2001,
49:
1352
14b
Baket D.
Sasaki H.
Kinoshita T.
Tsutsumi H.
Sakane K.
Bull. Chem. Soc. Jpn.
1996,
69:
1371
15
Brown DJ. In
The Pyridazines I, Chemistry of Heterocyclic Compounds
Taylor EC.
Wipf P.
Wiley;
New York:
2000.
p.56
16
Sundberg RJ.
Indoles
Academic Press;
London:
1996.
17a www.silicycle.com.
17b www.sigma-aldrich.com.
For publications related to the aza-Michael reaction by supported reagents, see:
18a
Fetterly BM.
Jana NK.
Verkade JG.
Tetrahedron
2006,
62:
440
18b
Bartoli G.
Bartolacci M.
Giuliani A.
Marcantoni E.
Massaccessi M.
Torregiani E.
J. Org. Chem.
2005,
70:
169
19
Representative Procedure for the Alkylation-Knoevenagel (Method A) or Aza-Michael-Knoevenagel (Method B) Sequences: In a coated Kimble vial was charged a mixture of the scaffold A1-A3 (0.60 mmol) in the appropriate solvent [THF (3 mL) for A1 or A3, toluene for A2]. The supported organic base (1.5 mmol of PS-TBD 2 for method A, 0.12 mmol for method B) and the alkyl halide (0.66 mmol; method A) or the Michael acceptor (0.72 mmol; method B) were added at the appropriate temperature (40 °C for A1 and A3, r.t. for A2 in method A, 60 °C for all scaffolds in method B). The sample was vortexed for 30 min to give the corresponding N-blocked adduct. Addition of the appropriate malonic acid derivative (1.1 equiv, stirring for 4-14 h; see Figure
[4]
) to the adduct at the appropriate temperature (40 °C for A1, 60 °C for A2, r.t. for A3 in method A; 50 °C, 60 °C and r.t. for A1, A2 and A3, respectively in method B) in the corresponding solvent, led to the Knoevenagel product after simple filtration of the supported reagents by a fritted syringe. Evaporation of the solvent and purification by a parallel short chromatographic filtration (on silica gel) employing a vacuum manifold (Visiprep®) to remove the small excess of malonic acid derivative afforded pure samples that were characterised by spectroscopic and analytical data.
20 Complete details of the synthesis and spectral characteristics of the compounds obtained will be published elsewhere in a full paper. All compounds gave satisfactory spectral data (1H NMR, 13C NMR, FTIR, MS). Yields given correspond to the isolated pure compounds. Chromatographic filtration for all compounds was carried out using EtOAc-hexane (1:4) as eluent mixture. Selected physical and spectral data for some compounds are as follows: A1B4D3: mp 218-219 °C (i-PrOH); yield: 70%. IR (KBr): 2233 (CN), 1709 (CO), 1665 (CO), 1599 (Ar) cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.12 (s, 1 H, CH), 8.88 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.50-7.64 (m, 1 H, Ar), 7.33-7.43 (m, 4 H, Ar), 7.19-7.23 (m, 3 H, Ar), 5.42 (s, 2 H, CH2), 4.34 (q, J = 7.2 Hz, 2 H, CH2), 1.35 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 358 (11) [M+], 285 (100), 91 (16). HRMS: m/z [M+] calcd for C22H18N2O3: 358.1317; found: 358.1316. A2B4D3: mp 130-131 °C (i-PrOH); yield: 67%. IR (KBr): 2209 (CN), 1747 (CO), 1578 (Ar), 1094 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.61 (s, 1 H, CH), 8.60 (s, 1 H, CH), 7.83-7.86 (m, 1 H, Ar), 7.27-7.35 (m, 6 H, Ar), 7.15-7.18 (m, 2 H, Ar), 5.41 (s, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 1.39 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 330 (75) [M+], 183 (1), 139 (2), 91 (100). A3B1D2: mp 220-221 °C (i-PrOH); yield: 79%. IR (KBr): 2229 (CN), 1727 (CO), 1659 (CO), 1580 (Ar), 1083 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.92 (s, 1 H, CH), 7.44-7.53 (m, 4 H, Ar + CH), 7.35-7.39 (m, 2 H, Ar), 3.92 (s, 3 H, CH3), 3.89 (s, 3 H, CH3). MS (70 eV): m/z (%) = 295 (100) [M+], 236 (100), 208 (35), 164 (30). HRMS: m/z [M+] calcd for C16H13N3O3: 295.0957; found: 295.0955. A1C4D2: mp 186-187 °C (i-PrOH); yield: 70%. IR (KBr): 2220 (CN), 1717 (CO), 1624 (CO), 1584 (Ar), 1093 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.10 (s, 1 H, CH), 8.81 (s, 1 H, CH), 8.47 (d, J = 8.2 Hz, 1 H, Ar), 7.70-7.74 (m, 1 H, Ar), 7.45-7.48 (m, 2 H, Ar), 4.54 (t, J = 6.7 Hz, 2 H, CH2), 4.15 (q, J = 7.2 Hz, 2 H, CH2), 3.86 (s, 3 H, CH3), 2.91 (t, J = 6.7 Hz, 2 H, CH2), 1.20 (t, J = 7.2 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 354 (16) [M+], 323 (4), 295 (100), 267 (16). A2C1D3: mp 153-154 °C (i-PrOH); yield: 80%. IR (KBr): 2215 (CN), 1721 (CO), 1589 (Ar), 1039 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.55 (s, 1 H, CH), 8.54 (s, 1 H, CH), 7.86 (dd, J = 1.6, 5.1 Hz, 1 H, Ar), 7.35-7.45 (m, 3 H, Ar), 4.57 (t, J = 6.9 Hz, 2 H, CH2), 4.37 (q, J = 7.1 Hz, 2 H, CH2), 2.94 (t, J = 6.9 Hz, 2 H, CH2), 1.35 (t, J = 7.1 Hz, 3 H, CH3). MS (70 eV): m/z (%) = 293 (100) [M+], 253 (64), 225 (26), 179 (9). A3C2D1: mp 127-128 °C (i-PrOH); yield: 65%. IR (KBr): 2235 (CN), 1736 (COO), 1670 (CO), 1588 (Ar), 1092 (COC) cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.51-7.55 (m, 5 H, Ar), 7.47 (s, 1 H, CH), 7.34 (s, 1 H, CH), 4.38 (t, J = 6.9 Hz, 2 H, CH2), 3.67 (s, 3 H, CH3), 2.90 (t, J = 6.9 Hz, 2 H, CH2). MS (70 eV): m/z (%) = 334 (22) [M+], 303 (16), 275 (26), 247 (50), 234 (100), 222 (25), 191 (23).