Abstract
This account describes the development of methyleneaziridines as heterocyclic building
blocks for a variety of useful synthetic transformations including multicomponent
reactions, cycloadditions and radical cascades.
1 Introduction
2 Preparation of Methyleneaziridines
2.1 Ring Closure to Methyleneaziridines
2.2 Functionalization of Methyleneaziridines
3 Multicomponent Reactions
3.1 Ketone-Forming MCRs
3.2 Amine- and Heterocycle-Forming MCRs
3.3 α-Amino Nitrile Forming MCRs
4 [4+3] Cycloadditions
5 Radical Rearrangements
6 Conclusions
Key words
aziridines - strained heterocycles - ring opening
References and Notes
<A NAME="RA42006ST-1A">1a</A>
Hu XE.
Tetrahedron
2004,
60:
2701
<A NAME="RA42006ST-1B">1b</A>
Dahanukar VH.
Zavialov IA.
Curr. Opin. Drug Discovery Dev.
2002,
5:
918
<A NAME="RA42006ST-1C">1c</A>
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
<A NAME="RA42006ST-1D">1d</A>
McCoull W.
Davis FA.
Synthesis
2000,
1347
<A NAME="RA42006ST-1E">1e</A>
Osborn HMI.
Sweeney J.
Tetrahedron: Asymmetry
1997,
8:
1693
<A NAME="RA42006ST-1F">1f</A>
Tanner D.
Angew. Chem., Int. Ed. Engl.
1994,
33:
599
<A NAME="RA42006ST-2">2</A>
Bachrach SM.
J. Phys. Chem.
1993,
97:
4996
<A NAME="RA42006ST-3">3</A>
Lwowski W. In Comprehensive Heterocyclic Chemistry
Vol. 7:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.1-16
<A NAME="RA42006ST-4">4</A>
Bottini AT.
Roberts JD.
J. Am. Chem. Soc.
1957,
79:
1462
<A NAME="RA42006ST-5">5</A>
Quast H.
Jakob R.
Peters K.
Peters E.-M.
von Schnering HG.
Chem. Ber.
1984,
117:
840
<A NAME="RA42006ST-6">6</A>
Ince J.
Ross TM.
Shipman M.
Slawin AMZ.
Ennis DS.
Tetrahedron
1996,
52:
7037
<A NAME="RA42006ST-7">7</A>
Hayes JF.
Prévost N.
Prokes I.
Shipman M.
Slawin AMZ.
Twin H.
Chem. Commun.
2003,
1344
<A NAME="RA42006ST-8">8</A>
Shiers JJ.
Shipman M.
Hayes JF.
Slawin AMZ.
J. Am. Chem. Soc.
2004,
126:
6868
<A NAME="RA42006ST-9">9</A>
Bottini AT.
Roberts JD.
J. Am. Chem. Soc.
1958,
80:
5203
<A NAME="RA42006ST-10">10</A>
Quast H.
Risler W.
Angew. Chem., Int. Ed. Engl.
1973,
12:
414
For related thermal rearrangements of methyleneaziridinium cations, see:
<A NAME="RA42006ST-11A">11a</A>
Jongejan E.
Steinberg H.
De Boer TJ.
Recl. Trav. Chim. Pays-Bas
1978,
97:
145
<A NAME="RA42006ST-11B">11b</A>
Jongejan E.
Steinberg H.
De Boer TJ.
Recl. Trav. Chim. Pays-Bas
1979,
98:
66
<A NAME="RA42006ST-12A">12a</A>
Bingham EM.
Gilbert JC.
J. Org. Chem.
1975,
40:
224
<A NAME="RA42006ST-12B">12b</A> See also:
Bleiholder RF.
Shechter H.
J. Am. Chem. Soc.
1968,
90:
2131
<A NAME="RA42006ST-13">13</A>
Purification by distillation is preferred over chromatography. Poor mass recovery
is observed when methyleneaziridines are subjected to this purification technique.
Exceptions include derivatives bearing substituents on the exocyclic double bond wherein
high mass recovery and purity can be achieved by chromatography on silica gel pretreated
with Et3N.
<A NAME="RA42006ST-14">14</A>
Pollard CB.
Parcell RF.
J. Am. Chem. Soc.
1951,
73:
2925
<A NAME="RA42006ST-15">15</A>
Ettlinger MG.
Kennedy F.
Chem. Ind.
1956,
166
<A NAME="RA42006ST-16">16</A>
Wijnberg JBPA.
Wiering PG.
Steinberg H.
Synthesis
1981,
901
<A NAME="RA42006ST-17">17</A>
De Kimpe N.
De Smaele D.
Sakonyi Z.
J. Org. Chem.
1997,
62:
2448
<A NAME="RA42006ST-18">18</A>
Tehrani KA.
De Kimpe N.
Tetrahedron Lett.
2000,
41:
1975
<A NAME="RA42006ST-19">19</A> It is suggested that the synthesis of 1,4-diazaspiro-[2.2]pentanes by nitrene
addition to allenes proceeds via the corresponding methyleneaziridine. See:
Atkinson RS.
Malpass JR.
Tetrahedron Lett.
1975,
16:
4305
<A NAME="RA42006ST-20">20</A>
Ennis DS.
Ince J.
Rahman S.
Shipman M.
J. Chem. Soc., Perkin Trans. 1
2000,
2047
<A NAME="RA42006ST-21">21</A>
Shiers JJ.
PhD Thesis
University of Warwick;
UK:
2006.
<A NAME="RA42006ST-22">22</A>
Prévost N.
Shipman M.
Tetrahedron
2002,
58:
7165
<A NAME="RA42006ST-23">23</A>
Margathe, J. F.; Shipman, M.; Smith, S. C. unpublished results.
<A NAME="RA42006ST-24">24</A>
Twin H.
PhD Thesis
University of Exeter;
UK:
2002.
<A NAME="RA42006ST-25">25</A>
Hayes JF.
Shipman M.
Slawin AMZ.
Twin H.
Heterocycles
2002,
58:
243
<A NAME="RA42006ST-26">26</A>
Ince J.
Ross TM.
Shipman M.
Ennis DS.
Tetrahedron: Asymmetry
1996,
7:
3397
<A NAME="RA42006ST-27">27</A>
Margathe JF.
Shipman M.
Smith SC.
Org. Lett.
2005,
7:
4987
<A NAME="RA42006ST-28">28</A>
Prie G.
Prévost N.
Twin H.
Fernandes SA.
Hayes JF.
Shipman M.
Angew. Chem. Int. Ed.
2004,
43:
6517
<A NAME="RA42006ST-29">29</A>
Bottini AT.
Olsen RE.
J. Am. Chem. Soc.
1962,
84:
195
<A NAME="RA42006ST-30">30</A>
It is unclear why Bottini and Olsen (ref. 29) were unable to detect exchange with
the solvent under their experimental conditions. However, we suspect that an insufficient
amount of base was added. This conclusion was reached on the basis of the following
observations. First, for the exchange experiment, they used just a catalytic quantity
(0.26 equiv) of commercial sodium amide, whereas cyclisations were conducted using
NaNH2 made in situ from sodium metal and FeCl3. In our experience, the activity of commercial material is inferior and often necessitates
the use of a large excess of reagent. Second, 28 used in the experiment was contaminated with 7% of the corresponding alkyne which
would have consumed a significant proportion of the added base.
<A NAME="RA42006ST-31A">31a</A>
Rappoport Z.
Acc. Chem. Res.
1981,
14:
7
<A NAME="RA42006ST-31B">31b</A>
Rappoport Z.
Acc. Chem. Res.
1992,
25:
474
<A NAME="RA42006ST-32A">32a</A>
Clarke TC.
Kelsy DR.
Bergman RG.
J. Am. Chem. Soc.
1972,
94:
3626
<A NAME="RA42006ST-32B">32b</A>
Summerville RH.
Senkler CA.
Schleyer P.
Dueber TE.
Stang PJ.
J. Am. Chem. Soc.
1974,
96:
1100
<A NAME="RA42006ST-32C">32c</A>
Summerville RH.
von R. Schleyer P.
J. Am. Chem. Soc.
1974,
96:
1110
<A NAME="RA42006ST-33A">33a</A>
Ochiai M.
Oshima K.
Masaki Y.
J. Am. Chem. Soc.
1991,
113:
7059
<A NAME="RA42006ST-33B">33b</A>
Okuyama T.
Ochiai M.
J. Am. Chem. Soc.
1997,
119:
4785
<A NAME="RA42006ST-33C">33c</A>
Ochiai M.
Yamamoto S.
Sato K.
Chem. Commun.
1999,
1363
<A NAME="RA42006ST-33D">33d</A>
Ochiai M.
Yamamoto S.
Chem. Commun.
2002,
2802
<A NAME="RA42006ST-34A">34a</A>
Bach RD.
Baboul AG.
Schlegel HB.
J. Am. Chem. Soc.
2001,
123:
5787
<A NAME="RA42006ST-34B">34b</A>
Kim CK.
Hyun KH.
Kim CK.
Lee I.
J. Am. Chem. Soc.
2000,
122:
2294 ; and references cited therein
<A NAME="RA42006ST-35">35</A>
Quast H.
Weise Vélez CA.
Angew. Chem., Int. Ed. Engl.
1974,
13:
342
<A NAME="RA42006ST-36">36</A> For a recent elegant solution to this problem, see:
Hodgson DM.
Humphreys PG.
Ward JG.
Org. Lett.
2005,
7:
1153
<A NAME="RA42006ST-37">37</A>
Montagne C.
Prévost N.
Prie G.
Rahman S.
Ince J.
Hayes JF.
Shipman M.
Tetrahedron
2006,
62:
8447
<A NAME="RA42006ST-38">38</A>
Quast H.
Weise Vélez CA.
Angew. Chem., Int. Ed. Engl.
1978,
17:
213
<A NAME="RA42006ST-39">39</A> For a monograph, see:
Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim, Germany:
2005.
<A NAME="RA42006ST-40A">40a</A>
Strecker A.
Justus Liebigs Ann. Chem.
1850,
75:
27
For reviews, see:
<A NAME="RA42006ST-40B">40b</A>
Yet L.
Angew. Chem. Int. Ed.
2001,
40:
875
<A NAME="RA42006ST-40C">40c</A>
Ohfune Y.
Shinada T.
Bull. Chem. Soc. Jpn.
2003,
76:
1115
<A NAME="RA42006ST-40D">40d</A>
Groger H.
Chem. Rev.
2003,
103:
2795
<A NAME="RA42006ST-41A">41a</A>
Passerini M.
Gazz. Chim. Ital.
1921,
51:
126
<A NAME="RA42006ST-41B">41b</A>
Passerini M.
Ragni G.
Gazz. Chim. Ital.
1931,
61:
964
For recent developments, see:
<A NAME="RA42006ST-41C">41c</A>
Denmark SE.
Fan Y.
J. Am. Chem. Soc.
2003,
125:
7825
<A NAME="RA42006ST-41D">41d</A>
Andreana PR.
Liu CC.
Schreiber SL.
Org. Lett.
2004,
6:
4231 ; and cited references therein
<A NAME="RA42006ST-42A">42a</A>
Ugi I.
Steinbrückner C.
Angew. Chem.
1960,
72:
267
<A NAME="RA42006ST-42B">42b</A>
Domling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RA42006ST-43A">43a</A>
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J. Chem. Soc. D
1971,
36
<A NAME="RA42006ST-43B">43b</A>
Gibson SE.
Mainolfi N.
Angew. Chem. Int. Ed.
2005,
44:
3022
<A NAME="RA42006ST-44A">44a</A>
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
<A NAME="RA42006ST-44B">44b</A>
Kappe CO.
Tetrahedron
1993,
49:
6937
<A NAME="RA42006ST-44C">44c</A>
Kappe CO.
Acc. Chem. Res.
2000,
33:
879
<A NAME="RA42006ST-45A">45a</A>
Mannich C.
Kröschl W.
Arch. Pharm.
1912,
250:
647
<A NAME="RA42006ST-45B">45b</A> For a recent review, see:
Córdova A.
Acc. Chem. Res.
2004,
37:
102
<A NAME="RA42006ST-46">46</A>
This process involves the reaction of two reagents together to form an intermediate
that is captured by the subsequent addition of further reagents. Hence it is more
precisely defined as a sequential component reaction.
For examples, see:
<A NAME="RA42006ST-47A">47a</A>
Penkett CS.
Simpson ID.
Tetrahedron Lett.
2001,
42:
1179
<A NAME="RA42006ST-47B">47b</A>
Eis MJ.
Ganem B.
Tetrahedron Lett.
1985,
26:
1153
<A NAME="RA42006ST-48">48</A>
Crandall JK.
Crawley LC.
Komin JB.
J. Org. Chem.
1975,
40:
2045
<A NAME="RA42006ST-49">49</A>
Ince J.
Shipman M.
Ennis DS.
Tetrahedron Lett.
1997,
38:
5887
<A NAME="RA42006ST-50">50</A>
Hayes JF.
Shipman M.
Twin H.
Chem. Commun.
2000,
1791
<A NAME="RA42006ST-51">51</A>
Hayes JF.
Shipman M.
Twin H.
J. Org. Chem.
2002,
67:
935
For discussion of the factors influencing regioselectivity in the deprotonation of
imines, see:
<A NAME="RA42006ST-52A">52a</A>
Meyers AI.
Williams DR.
Erickson GW.
White S.
Druelinger M.
J. Am. Chem. Soc.
1981,
103:
3081
<A NAME="RA42006ST-52B">52b</A>
Hosomi A.
Araki Y.
Sakurai H.
J. Am. Chem. Soc.
1982,
104:
2081
<A NAME="RA42006ST-52C">52c</A>
Smith JK.
Bergbreiter DE.
Newcomb M.
J. Am. Chem. Soc.
1983,
105:
4396
<A NAME="RA42006ST-53">53</A> For another regiospecific route to metalloenamines, see:
Wender PA.
Eissenstat MA.
J. Am. Chem. Soc.
1978,
100:
292
For reviews, see:
<A NAME="RA42006ST-54A">54a</A>
Bailey PD.
Millwood PA.
Smith PD.
Chem. Commun.
1998,
633
<A NAME="RA42006ST-54B">54b</A>
Laschat S.
Dickner T.
Synthesis
2000,
1781
<A NAME="RA42006ST-55">55</A>
Hayes JF.
Shipman M.
Twin H.
Chem. Commun.
2001,
1784
<A NAME="RA42006ST-56">56</A>
Shiers JJ.
Clarkson GJ.
Shipman M.
Hayes JF.
Chem. Commun.
2006,
649
<A NAME="RA42006ST-57">57</A>
Cookson RC.
Halton B.
Stevens IDR.
Watts CT.
J. Chem. Soc. C
1967,
928
<A NAME="RA42006ST-58">58</A>
Shipman M.
Ross TM.
Slawin AMZ.
Tetrahedron Lett.
1999,
40:
6091
<A NAME="RA42006ST-59">59</A>
Akasaka T.
Nomura Y.
Ando W.
J. Org. Chem.
1988,
53:
1670
<A NAME="RA42006ST-60A">60a</A>
Schmid R.
Schmid H.
Helv. Chim. Acta
1974,
57:
1883
<A NAME="RA42006ST-60B">60b</A>
Ernst B.
Ganter C.
Helv. Chim. Acta
1978,
61:
1775
<A NAME="RA42006ST-60C">60c</A>
De Kimpe N.
Palamareva M.
Verhe R.
De Buyck L.
Schamp N.
J. Chem. Res., Synop.
1986,
190
<A NAME="RA42006ST-60D">60d</A>
Oh J.
Lee J.
Jin S.-J.
Cha JK.
Tetrahedron Lett.
1994,
35:
3449
<A NAME="RA42006ST-60E">60e</A>
Lee J.
Oh J.
Jin S.-J.
Choi J.-R.
Atwood JL.
Cha JK.
J. Org. Chem.
1994,
59:
6955
<A NAME="RA42006ST-60F">60f</A>
Kim H.
Ziani-Cherif C.
Oh J.
Cha JK.
J. Org. Chem.
1995,
60:
792
<A NAME="RA42006ST-60G">60g</A>
Jin S.-J.
Choi J.-R.
Oh J.
Lee D.
Cha JK.
J. Am. Chem. Soc.
1995,
117:
10914
<A NAME="RA42006ST-60H">60h</A>
Kende AS.
Huang H.
Tetrahedron Lett.
1997,
38:
3353
For reviews, see:
<A NAME="RA42006ST-61A">61a</A>
Noyori R.
Hayakawa Y.
Org. React.
1983,
29:
163
<A NAME="RA42006ST-61B">61b</A>
Hoffmann HMR.
Angew. Chem., Int. Ed. Engl.
1984,
23:
1
<A NAME="RA42006ST-61C">61c</A>
Mann J.
Tetrahedron
1986,
42:
4611
<A NAME="RA42006ST-61D">61d</A>
Rigby JH.
Pigge FC.
Org. React.
1997,
51:
351
<A NAME="RA42006ST-61E">61e</A>
Harmata M.
Acc. Chem. Res.
2001,
34:
595
<A NAME="RA42006ST-61F">61f</A>
Harmata M.
Rashatasakhon P.
Tetrahedron
2003,
59:
2371
<A NAME="RA42006ST-62A">62a</A>
Stamm H.
Assithianakis P.
Buchholz B.
Weib R.
Tetrahedron Lett.
1982,
23:
5021
<A NAME="RA42006ST-62B">62b</A>
Werry J.
Stamm H.
Lin P.-Y.
Falkenstein R.
Gries S.
Irngartinger H.
Tetrahedron
1989,
45:
5015
<A NAME="RA42006ST-62C">62c</A>
Dickinson JM.
Murphy JA.
J. Chem. Soc., Chem. Commun.
1990,
434
<A NAME="RA42006ST-62D">62d</A>
Dickinson JM.
Murphy JA.
Tetrahedron
1992,
48:
1317
<A NAME="RA42006ST-62E">62e</A>
De Kimpe N.
Jolie R.
De Smaele D.
J. Chem. Soc., Chem. Commun.
1994,
1221
<A NAME="RA42006ST-62F">62f</A>
De Kimpe N.
De Smaele D.
Bogaert P.
Synlett
1994,
287
<A NAME="RA42006ST-62G">62g</A>
De Smaele D.
Bogaert P.
De Kimpe N.
Tetrahedron Lett.
1998,
39:
9797
<A NAME="RA42006ST-62H">62h</A>
Schwan AL.
Refvik MD.
Tetrahedron Lett.
1993,
34:
4901
<A NAME="RA42006ST-62I">62i</A>
Molander GA.
Stengel PJ.
Tetrahedron
1997,
53:
8887
<A NAME="RA42006ST-62J">62j</A>
Marples BA.
Toon RC.
Tetrahedron Lett.
1999,
40:
4873
<A NAME="RA42006ST-63">63</A> For a review on the use of aminyl radicals in synthesis, see:
Fallis AG.
Brinza IM.
Tetrahedron
1997,
53:
17543
<A NAME="RA42006ST-64">64</A>
Clive DLJ.
Chittatu GJ.
Farina V.
Kiel WA.
Menchen SM.
Russell CG.
Singh A.
Wong CK.
Curtis NJ.
J. Am. Chem. Soc.
1980,
102:
4438
<A NAME="RA42006ST-65">65</A>
Prévost N.
Shipman M.
Org. Lett.
2001,
3:
2383
<A NAME="RA42006ST-66">66</A>
Oh BH.
Nakamura I.
Yamamoto Y.
Tetrahedron Lett.
2002,
43:
9625
<A NAME="RA42006ST-67">67</A>
Oh BH.
Nakamura I.
Yamamoto Y.
ARKIVOC
2003,
(viii):
67
<A NAME="RA42006ST-68">68</A>
Siriwardana AI.
Kathriarachchi KKADS.
Nakamura I.
Gridnev ID.
Yamamoto Y.
J. Am. Chem. Soc.
2004,
126:
13898
<A NAME="RA42006ST-69">69</A>
Oh BH.
Nakamura I.
Yamamoto Y.
J. Org. Chem.
2004,
69:
2856
<A NAME="RA42006ST-70">70</A>
As far as we are aware, the toxicological effects of methyleneaziridines are unknown.
However, since the adverse health effects of aziridines are well established, it is
prudent to exercise caution in the handling of methyleneaziridines. Avoid all skin
contact and perform all manipulations in a well-vented fume cupboard with adequate
personal protection measures.