References and Notes
1a
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Pritytskaya TS.
J. Org. Chem. USSR (Engl. Transl.)
1989,
25:
2027
1b
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Synthesis
1991,
234
1c
Kulinkovich OG.
Savchenko AI.
Sviridov SV.
Vasilevsky DA.
Mendeleev Commun.
1993,
230
2 For recent review, see: Kulinkovich OG.
Russ. Chem. Rev. (Engl. Transl.)
2004,
53:
1065
3a
Denis JM.
Conia JM.
Tetrahedron Lett.
1972,
13:
4593
3b
Le Goaller R.
Pierre J.-L.
Bull. Soc. Chim. Fr.
1973,
1531
3c
Rubotton GM.
Lopes MI.
J. Org. Chem.
1973,
38:
2097
4a
Ryu I.
Murai S. In Houben-Weyl
4th ed., Vol. E17:
de Meijere A.
Thieme;
Stuttgart:
1996.
p.1985
4b
Kuwajima I.
Nakamura E.
Top. Curr. Chem.
1990,
133:
3
5a
Wasserman HH.
Clark GM.
Turley PC.
Top. Curr. Chem.
1974,
47:
73
5b
Salaün J.
Chem. Rev.
1983,
83:
619
5c
Salaün J.
Top. Curr. Chem.
1988,
144:
1
6
Sunder NM.
Patil PA.
Narashimhan NS.
J. Chem. Soc., Perkin Trans. 1
1990,
1331
7a
Kulinkovich OG.
Chem. Rev.
2003,
103:
2597
7b
Gibson DH.
De Puy CH.
Chem. Rev.
1974,
74:
605
8
Kulinkovich OG.
Eur. J. Org. Chem.
2004,
4517
9a
De Puy CH.
Jones HL.
Gibson DH.
J. Am. Chem. Soc.
1968,
90:
5306
9b
De Puy CH.
Jones HL.
Gibson DH.
J. Am. Chem. Soc.
1972,
90:
3924
10a
Akhrem AA.
Lakhvich FA.
Khripach VA.
Chem. Heterocycl. Compd. (Engl. Transl.)
1981,
853
10b
Kozikowski AP.
Acc. Chem. Res.
1984,
17:
410
10c
Baraldi PG.
Barco A.
Benetti S.
Pollini GP.
Simoni D.
Synthesis
1987,
857
11 Cyclopropanols 1a-h were synthesized by the reductive cyclopropanation of the corresponding esters with ethylmagnesium bromide (compounds 1a-g) or propylmagnesium bromide (1h) in the presence of titanium(IV) isopropoxide (see ref. 1).
12 Utilization of amyl nitrite that was stored in a refrigerator for more than two weeks led to a significant reduction of the reaction rate and to a decrease in the yields of products.
13 After crystallization from MeOH pure E isomer was obtained.
14
Preparation of β-Nitrosoketones 2; Typical Procedure: Freshly prepared amyl nitrite (17 mL, 124 mmol) was added at 5 °C under Ar atmosphere to a solution of 1a (4.9 g, 31 mmol) in anhyd benzene (5 mL) in one portion. The mixture was stirred for 3 h and was kept at r.t. until the reaction was completed as monitored by TLC (2-3 d, see ref. 20). The mixture was concentrated in vacuo and was used for the preparation of isoxazoles without further purification. In order to obtain solid samples of 2a (as a mixture of Z and E isomers), the residue was diluted with petroleum ether, cooled and the crystals were filtered off. Single E isomer of 2a (3.45 g, 20.2 mmol, 65%) was obtained by the crystallization from hot MeOH as a yellowish solid (mp 86-87 °C).
15 Analytical data of selected nitrosoketones 2.
2a: 1H NMR (400 MHz, CDCl3): δ = 0.83 (t, J = 6.8 Hz, 3 H), 1.18-1.30 (m, 6 H), 1.49-1.59 (m, 2 H), 2.44 (t, J = 7.4 Hz, 2 H), 2.90 (t, J = 6.2 Hz, 2 H), 4.40 (t, J = 6.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.84, 22.31, 23.41, 28.64, 31.39, 36.40, 42.74, 53.48, 206.63. IR (CCl4): 1722, 1371, 1250 cm-1. Anal. Calcd for C9H17NO2 (171.24): C, 63.13; H, 10.01. Found: C, 63.28; H, 9.75.
2c: 1H NMR (400 MHz, CDCl3): δ = 2.04-2.13 (m, 2 H), 2.72 (t, J = 7.0 Hz, 2 H), 2.97 (t, J = 6.1 Hz, 2 H), 3.58 (t, J = 6.2 Hz, 2 H), 4.47 (t, J = 6.1 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 26.10, 36.69, 39.44, 44.21, 53.60, 205.58. IR (CCl4): 1720, 1370, 1247 cm-1. Anal. Calcd for C6H10ClNO2 (163.61): C, 44.05; H, 6.16. Found: C, 43.90; H, 5.89.
16
Bellamy LJ.
Advances in Infrared Group Frequencies
Methuen & Co. Ltd.;
Bungay / Suffolk:
1968.
17
Preparation of Isoxazoles; Typical Procedure: Crude β-nitrosoketone 2a, prepared from 1e (4.9 g, 31 mmol) and amyl nitrite (17.0 mL, 124 mmol) as described above (see ref. 14) was diluted with anhyd MeOH (45 mL). The solution was heated under reflux until TLC indicated that no β-nitrosoketone 2a and intermediate isoxazoline 4a remained (2-3 days, see ref. 20). After removal of the solvent under reduced pressure, the isoxazole 3a was isolated by column chromatography (SiO2, PE-EtOAc as eluent) as a yellowish oil (4.4 g, 91%).
18 Analytical data of selected isoxazoles 3.
3c: 1H NMR (400 MHz, CDCl3): δ = 2.13-2.22 (m, 2 H), 2.97 (t, J = 7.4 Hz, 2 H), 3.57 (t, J = 6.3 Hz, 2 H), 6.03-6.05 (m, 1 H), 8.14-8.17 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 23.70, 30.14, 43.54, 100.58, 150.22, 170.93. IR (CCl4): 1606 cm-1. Anal. Calcd for C6H8ClNO (145.59): C, 49.50; H, 5.54. Found: C, 49.33; H, 5.75.
3e: 1H NMR (400 MHz, CDCl3): δ = 1.22-1.40 (m, 10 H), 1.65-1.73 (m, 2 H), 1.99-2.06 (m, 2 H), 2.76 (t, J = 7.7 Hz, 2 H), 4.92 (ddt, J
1 = 10.2 Hz, J
2 = 2.2 Hz, J
3 = 1.1 Hz, 1 H), 4.98 (ddt, J
1 = 16.9 Hz, J
2 = 2.2 Hz, J
3 = 1.5 Hz, 1 H), 5.80 (ddt, J
1 = 16.9 Hz, J
2 = 10.2 Hz, J
3 = 6.7 Hz, 1 H), 5.95-5.97 (m, 1 H), 8.12-8.14 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 26.49, 27.49, 28.83, 28.98, 28.99, 29.11, 29.24, 33.73, 99.76, 114.13, 139.10, 150.12, 173.02. IR (CCl4): 3079, 1640, 1593 cm-1. Anal. Calcd for C13H21NO (207.32): C, 75.32; H, 10.21. Found: C, 75.59; H, 10.02.
3g: 1H NMR (400 MHz, CDCl3): δ = 1.16 (t, J = 7.0 Hz, 6 H), 3.09 (d, J = 5.7 Hz, 2 H), 3.29 (dq, J
1 = 9.4 Hz, J
2 = 7.0 Hz, 2 H), 3.66 (dq, J
1 = 9.4 Hz, J
2 = 7.0 Hz, 2 H), 4.78 (t, J = 5.7 Hz, 1 H), 6.09 (d, J = 1.6 Hz, 1 H), 8.14 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 15.06, 31.92, 61.91, 100.18, 101.56, 150.19, 168.18. IR (CCl4): 2874, 1734, 1597, 1125, 1064 cm-1. Anal. Calcd for C9H15NO3 (185.22): C, 58.36; H, 8.16. Found: C, 58.60; H, 8.01.
19 Analytical data of 4: 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.9 Hz, 3 H), 1.22-1.53 (m, 8 H), 1.82-1.97 (m, 2 H), 2.89 (dd, J
1 = 18.4 Hz, J
2 = 1.3 Hz, 1 H), 2.92 (dd, J
1 = 18.4 Hz, J
2 = 1.6 Hz, 1 H), 3.10 (br s, 1 H), 7.20-7.23 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.97, 22.44, 24.60, 29.13, 31.58, 37.95, 44.86, 106.61, 147.16. IR (CCl4): 3598, 3395, 1722, 1601 cm-1. Anal. Calcd for C9H17NO2 (171.24): C, 63.13; H, 10.01. Found: C, 63.28; H, 9.75.
20 The reaction proceeded less smoothly under elevated temperatures or in the presence of acidic or basic catalysts.