References and Notes
<A NAME="RG29206ST-1A">1a</A>
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Pritytskaya TS.
J. Org. Chem. USSR (Engl. Transl.)
1989,
25:
2027
<A NAME="RG29206ST-1B">1b</A>
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Synthesis
1991,
234
<A NAME="RG29206ST-1C">1c</A>
Kulinkovich OG.
Savchenko AI.
Sviridov SV.
Vasilevsky DA.
Mendeleev Commun.
1993,
230
<A NAME="RG29206ST-2">2</A> For recent review, see:
Kulinkovich OG.
Russ. Chem. Rev. (Engl. Transl.)
2004,
53:
1065
<A NAME="RG29206ST-3A">3a</A>
Denis JM.
Conia JM.
Tetrahedron Lett.
1972,
13:
4593
<A NAME="RG29206ST-3B">3b</A>
Le Goaller R.
Pierre J.-L.
Bull. Soc. Chim. Fr.
1973,
1531
<A NAME="RG29206ST-3C">3c</A>
Rubotton GM.
Lopes MI.
J. Org. Chem.
1973,
38:
2097
<A NAME="RG29206ST-4A">4a</A>
Ryu I.
Murai S. In Houben-Weyl
4th ed., Vol. E17:
de Meijere A.
Thieme;
Stuttgart:
1996.
p.1985
<A NAME="RG29206ST-4B">4b</A>
Kuwajima I.
Nakamura E.
Top. Curr. Chem.
1990,
133:
3
<A NAME="RG29206ST-5A">5a</A>
Wasserman HH.
Clark GM.
Turley PC.
Top. Curr. Chem.
1974,
47:
73
<A NAME="RG29206ST-5B">5b</A>
Salaün J.
Chem. Rev.
1983,
83:
619
<A NAME="RG29206ST-5C">5c</A>
Salaün J.
Top. Curr. Chem.
1988,
144:
1
<A NAME="RG29206ST-6">6</A>
Sunder NM.
Patil PA.
Narashimhan NS.
J. Chem. Soc., Perkin Trans. 1
1990,
1331
<A NAME="RG29206ST-7A">7a</A>
Kulinkovich OG.
Chem. Rev.
2003,
103:
2597
<A NAME="RG29206ST-7B">7b</A>
Gibson DH.
De Puy CH.
Chem. Rev.
1974,
74:
605
<A NAME="RG29206ST-8">8</A>
Kulinkovich OG.
Eur. J. Org. Chem.
2004,
4517
<A NAME="RG29206ST-9A">9a</A>
De Puy CH.
Jones HL.
Gibson DH.
J. Am. Chem. Soc.
1968,
90:
5306
<A NAME="RG29206ST-9B">9b</A>
De Puy CH.
Jones HL.
Gibson DH.
J. Am. Chem. Soc.
1972,
90:
3924
<A NAME="RG29206ST-10A">10a</A>
Akhrem AA.
Lakhvich FA.
Khripach VA.
Chem. Heterocycl. Compd. (Engl. Transl.)
1981,
853
<A NAME="RG29206ST-10B">10b</A>
Kozikowski AP.
Acc. Chem. Res.
1984,
17:
410
<A NAME="RG29206ST-10C">10c</A>
Baraldi PG.
Barco A.
Benetti S.
Pollini GP.
Simoni D.
Synthesis
1987,
857
<A NAME="RG29206ST-11">11</A>
Cyclopropanols 1a-h were synthesized by the reductive cyclopropanation of the corresponding esters with
ethylmagnesium bromide (compounds 1a-g) or propylmagnesium bromide (1h) in the presence of titanium(IV) isopropoxide (see ref. 1).
<A NAME="RG29206ST-12">12</A>
Utilization of amyl nitrite that was stored in a refrigerator for more than two weeks
led to a significant reduction of the reaction rate and to a decrease in the yields
of products.
<A NAME="RG29206ST-13">13</A>
After crystallization from MeOH pure E isomer was obtained.
<A NAME="RG29206ST-14">14</A>
Preparation of β-Nitrosoketones 2; Typical Procedure: Freshly prepared amyl nitrite (17 mL, 124 mmol) was added at 5 °C under Ar atmosphere
to a solution of 1a (4.9 g, 31 mmol) in anhyd benzene (5 mL) in one portion. The mixture was stirred
for 3 h and was kept at r.t. until the reaction was completed as monitored by TLC
(2-3 d, see ref. 20). The mixture was concentrated in vacuo and was used for the preparation
of isoxazoles without further purification. In order to obtain solid samples of 2a (as a mixture of Z and E isomers), the residue was diluted with petroleum ether, cooled and the crystals were
filtered off. Single E isomer of 2a (3.45 g, 20.2 mmol, 65%) was obtained by the crystallization from hot MeOH as a yellowish
solid (mp 86-87 °C).
<A NAME="RG29206ST-15">15</A>
Analytical data of selected nitrosoketones 2.
2a: 1H NMR (400 MHz, CDCl3): δ = 0.83 (t, J = 6.8 Hz, 3 H), 1.18-1.30 (m, 6 H), 1.49-1.59 (m, 2 H), 2.44 (t, J = 7.4 Hz, 2 H), 2.90 (t, J = 6.2 Hz, 2 H), 4.40 (t, J = 6.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.84, 22.31, 23.41, 28.64, 31.39, 36.40, 42.74, 53.48, 206.63. IR (CCl4): 1722, 1371, 1250 cm-1. Anal. Calcd for C9H17NO2 (171.24): C, 63.13; H, 10.01. Found: C, 63.28; H, 9.75.
2c: 1H NMR (400 MHz, CDCl3): δ = 2.04-2.13 (m, 2 H), 2.72 (t, J = 7.0 Hz, 2 H), 2.97 (t, J = 6.1 Hz, 2 H), 3.58 (t, J = 6.2 Hz, 2 H), 4.47 (t, J = 6.1 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 26.10, 36.69, 39.44, 44.21, 53.60, 205.58. IR (CCl4): 1720, 1370, 1247 cm-1. Anal. Calcd for C6H10ClNO2 (163.61): C, 44.05; H, 6.16. Found: C, 43.90; H, 5.89.
<A NAME="RG29206ST-16">16</A>
Bellamy LJ.
Advances in Infrared Group Frequencies
Methuen & Co. Ltd.;
Bungay / Suffolk:
1968.
<A NAME="RG29206ST-17">17</A>
Preparation of Isoxazoles; Typical Procedure: Crude β-nitrosoketone 2a, prepared from 1e (4.9 g, 31 mmol) and amyl nitrite (17.0 mL, 124 mmol) as described above (see ref.
14) was diluted with anhyd MeOH (45 mL). The solution was heated under reflux until
TLC indicated that no β-nitrosoketone 2a and intermediate isoxazoline 4a remained (2-3 days, see ref. 20). After removal of the solvent under reduced pressure,
the isoxazole 3a was isolated by column chromatography (SiO2, PE-EtOAc as eluent) as a yellowish oil (4.4 g, 91%).
<A NAME="RG29206ST-18">18</A>
Analytical data of selected isoxazoles 3.
3c: 1H NMR (400 MHz, CDCl3): δ = 2.13-2.22 (m, 2 H), 2.97 (t, J = 7.4 Hz, 2 H), 3.57 (t, J = 6.3 Hz, 2 H), 6.03-6.05 (m, 1 H), 8.14-8.17 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 23.70, 30.14, 43.54, 100.58, 150.22, 170.93. IR (CCl4): 1606 cm-1. Anal. Calcd for C6H8ClNO (145.59): C, 49.50; H, 5.54. Found: C, 49.33; H, 5.75.
3e: 1H NMR (400 MHz, CDCl3): δ = 1.22-1.40 (m, 10 H), 1.65-1.73 (m, 2 H), 1.99-2.06 (m, 2 H), 2.76 (t, J = 7.7 Hz, 2 H), 4.92 (ddt, J
1 = 10.2 Hz, J
2 = 2.2 Hz, J
3 = 1.1 Hz, 1 H), 4.98 (ddt, J
1 = 16.9 Hz, J
2 = 2.2 Hz, J
3 = 1.5 Hz, 1 H), 5.80 (ddt, J
1 = 16.9 Hz, J
2 = 10.2 Hz, J
3 = 6.7 Hz, 1 H), 5.95-5.97 (m, 1 H), 8.12-8.14 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 26.49, 27.49, 28.83, 28.98, 28.99, 29.11, 29.24, 33.73, 99.76, 114.13, 139.10,
150.12, 173.02. IR (CCl4): 3079, 1640, 1593 cm-1. Anal. Calcd for C13H21NO (207.32): C, 75.32; H, 10.21. Found: C, 75.59; H, 10.02.
3g: 1H NMR (400 MHz, CDCl3): δ = 1.16 (t, J = 7.0 Hz, 6 H), 3.09 (d, J = 5.7 Hz, 2 H), 3.29 (dq, J
1 = 9.4 Hz, J
2 = 7.0 Hz, 2 H), 3.66 (dq, J
1 = 9.4 Hz, J
2 = 7.0 Hz, 2 H), 4.78 (t, J = 5.7 Hz, 1 H), 6.09 (d, J = 1.6 Hz, 1 H), 8.14 (d, J = 1.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 15.06, 31.92, 61.91, 100.18, 101.56, 150.19, 168.18. IR (CCl4): 2874, 1734, 1597, 1125, 1064 cm-1. Anal. Calcd for C9H15NO3 (185.22): C, 58.36; H, 8.16. Found: C, 58.60; H, 8.01.
<A NAME="RG29206ST-19">19</A>
Analytical data of 4: 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.9 Hz, 3 H), 1.22-1.53 (m, 8 H), 1.82-1.97 (m, 2 H), 2.89 (dd, J
1 = 18.4 Hz, J
2 = 1.3 Hz, 1 H), 2.92 (dd, J
1 = 18.4 Hz, J
2 = 1.6 Hz, 1 H), 3.10 (br s, 1 H), 7.20-7.23 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.97, 22.44, 24.60, 29.13, 31.58, 37.95, 44.86, 106.61, 147.16. IR (CCl4): 3598, 3395, 1722, 1601 cm-1. Anal. Calcd for C9H17NO2 (171.24): C, 63.13; H, 10.01. Found: C, 63.28; H, 9.75.
<A NAME="RG29206ST-20">20</A>
The reaction proceeded less smoothly under elevated temperatures or in the presence
of acidic or basic catalysts.