References and Notes
Reviews:
1a
Greeves N. In
Comprehensive Organic Synthesis
Vol. 8:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1
1b
Gawley RE.
Zhang X. In
Encyclopedia of Reagents for Organic Synthesis
Vol. 6:
Paquette LA.
John Wiley & Sons;
Chichester:
1995.
p.4238
1c
Gawley RE. In
Encyclopedia of Reagents for Organic Synthesis
Vol. 7:
Paquette LA.
John Wiley & Sons;
Chichester:
1995.
p.4568
2a
Tsuda T.
Fujii T.
Kawasaki K.
Saegusa T.
J. Chem. Soc., Chem. Commun.
1980,
1013
2b
Mahoney WS.
Brestensky DM.
Stryker JM.
J. Am. Chem. Soc.
1988,
110:
291
2c
Lipshutz BH.
Ung CS.
Sengupta S.
Synlett
1989,
64
3 CaH2 has been utilized as a reductive hydride source: Aida T.
Kuboki N.
Kato K.
Uchikawa W.
Matsuno C.
Okamoto S.
Tetrahedron Lett.
2005,
46:
1667
For characteristic reactivity and/or selectivity shown by barium reagents, see:
4a
Yanagisawa A.
Takahashi H.
Arai T.
Chem. Commun.
2004,
580
4b
Yanagisawa A.
Okitsu S.
Arai T.
Synlett
2005,
1679
Reviews:
4c
Yanagisawa A. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.695
4d
Yanagisawa A. In
Main Group Metals in Organic Synthesis
Vol. 1:
Yamamoto H.
Oshima K.
Wiley-VCH;
Weinheim:
2004.
p.175
For strontium reagents, see:
4e
Miyoshi N. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.685
4f
Miyoshi N.
Ikehara D.
Matsuo T.
Kohno T.
Matsui A.
Wada M.
J. Synth. Org. Chem. Jpn.
2006,
64:
845
For recent examples of dimerization of α,β-enones:
5a
Carreño MC.
Ribagorda M.
Org. Lett.
2003,
5:
2425
5b
Zhang F.-Y.
Corey EJ.
Org. Lett.
2004,
6:
3397
6
Dimerization Reaction of Enones Promoted by BaH
2
; General Procedure: An oven-dried, 50 mL two-necked round-bottomed flask equipped with a Teflon®-coated magnetic stirring bar was flushed with argon. BaH2 (280 mg, 2 mmol) was put into the apparatus and covered with anhyd THF (10 mL) and the mixture was stirred for 10 min at r.t. To the heterogeneous solution were added cyclic α,β-unsat-urated ketone (2 mmol) and Lewis base (10 mmol) at 0 °C. After being stirred for 10-62 h under reflux conditions (bath temperature: 80 °C), the mixture was treated with an aq 1 N HCl solution (1.5 mL) at 0 °C and the aqueous layer was extracted with CHCl3 (5 mL). The combined organic extracts were washed with sat. brine, dried over anhyd Na2SO4, and concentrated in vacuo after filtration. The residual crude product was purified by column chromatography on silica gel to give the homocoupling product.
2-(3-Oxocyclohexyl)cyclohex-2-enone (Table
[1]
and Scheme
[1]
): 1H NMR (400 MHz, CDCl3): δ = 1.52-1.81 (m, 3 H), 1.85-2.08 (m, 3 H), 2.22-2.48 (m, 8 H), 3.00 (m, 1 H), 6.72 (t, J = 4.1 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 22.4, 24.8, 25.7, 30.3, 37.2, 38.4, 40.9, 46.1, 141.4, 144.2, 198.2, 211.1. IR (neat): 3015, 2941, 2868, 1710, 1672, 1388, 1256, 1224, 755 cm-1.
5-(3-Oxocyclopentyl)cyclopent-2-enone (1:1 mixture, Scheme
[2]
): 1H NMR (400 MHz, CDCl3): δ = 1.69-2.65 (m, 9 H), 2.87 (m, 1 H), 6.21 (m, 1 H), 7.72 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 26.1, 27.1, 32.8, 32.9, 37.8, 37.9, 38.0, 38.1, 41.0, 42.6, 47.1, 47.6, 134.3 (2 × C), 163.2, 163.4, 210.5, 210.6, 218.0, 218.3. IR (neat): 2960, 2931, 2902, 1740, 1700, 1589, 1405, 1347, 1161, 778 cm-1.
7 Besides the dimer, a few by-products were obtained in addition to a significant amount of the starting material.
For reactions via a barium enolate, see:
8a
Yamada YMA.
Shibasaki M.
Tetrahedron Lett.
1998,
39:
5561
8b
Yamada YMA.
Uozumi Y.
Org. Lett.
2006,
8:
1375
8c
Saito S.
Kobayashi S.
J. Am. Chem. Soc.
2006,
128:
8704
8d
Takahashi H.
Arai T.
Yanagisawa A.
Synlett
2006,
2833
For recent examples of Michael addition of enolates, see:
9a
Harada S.
Kumagai N.
Kinoshita T.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
2582
9b
Gnaneshwar R.
Wadgaonkar PP.
Sivaram S.
Tetrahedron Lett.
2003,
44:
6047
9c
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
9d
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2005,
1917
9e
Wang X.
Adachi S.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Harada T.
J. Org. Chem.
2003,
68:
10046
9f
Harada T.
Adachi S.
Wang X.
Org. Lett.
2004,
6:
4877
9g
Harada T.
Yamauchi T.
Adachi S.
Synlett
2005,
2151
9h
Jaber N.
Assié M.
Fiaud J.-C.
Collin J.
Tetrahedron
2004,
60:
3075
9i
Nakagawa T.
Fujisawa H.
Nagata Y.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2005,
78:
236
9j
Kumaraswamy G.
Jena N.
Sastry MNV.
Padmaja M.
Markondaiah B.
Adv. Synth. Catal.
2005,
347:
867
9k
Wang W.
Li H.
Wang J.
Org. Lett.
2005,
7:
1637
10 In the catalytic reaction (Scheme
[1]
), a second barium enolate such as 2 in Scheme
[3]
is considered to act as a base to deprotonate 2-cyclohexen-1-one at the 4-position.
11 Although an alternative Morita-Baylis-Hillman-type mechanism can also be considered for the reaction
[13]
when 2-cyclohexen-1-one was treated with HMPA (5 equiv) in the absence of BaH2 under the standard reaction conditions, the dimerization reaction did not proceed at all.
12
Cross-Coupling Reaction of Enones Promoted by BaH
2
; General Procedure: An oven-dried, 50 mL two-necked round-bottomed flask equipped with a Teflon®-coated magnetic stirring bar was flushed with argon. BaH2 (70 mg, 0.5 mmol) was put into the apparatus and covered with anhyd THF (10 mL) and the mixture was stirred for 10 min at r.t. To the heterogeneous solution were added cyclic α,β-unsaturated ketone (1 mmol), chalcone derivative (2 mmol), and DMPU (5 mmol) at 0 °C. After being stirred for 5-40 h under reflux conditions (bath temperature: 80 °C), the mixture was treated with an aq 1 N HCl solution (1.5 mL) at 0 °C and the aqueous layer was extracted with CHCl3 (5 mL). The combined organic extracts were washed with sat. brine, dried over anhyd Na2SO4, and concentrated in vacuo after filtration. The residual crude product was purified by column chromatography on silica gel to give the cross-coupling product.
2-(3-Oxo-1,3-diphenylpropyl)cyclohex-2-enone (Scheme
[4]
): 1H NMR (400 MHz, CDCl3): δ = 1.88-1.99 (m, 2 H), 2.32-2.43 (m, 4 H), 3.45 (dd, J = 7.7, 16.7 Hz, 1 H), 3.63 (dd, J = 7.2, 16.7 Hz, 1 H), 4.63 (t, J = 7.0 Hz, 1 H), 6.71 (t, J = 4.2 Hz, 1 H), 7.12-7.59 (m, 8 H), 7.89-7.98 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 22.3, 25.8, 38.3, 40.0, 42.6, 126.2, 127.4 (2 × C), 127.8 (2 × C), 128.2, 128.5 (3 × C), 132.7, 136.6, 141.3, 142.2, 145.5, 197.9, 199.7. IR (neat): 3028, 2946, 1722, 1680, 1598, 1495, 1448 cm-1.
5-Benzoyl-6-phenylbicyclo[2.2.1]heptan-2-one (Table
[2]
, Entry 1): 1H NMR (400 MHz, CDCl3): δ = 1.87-2.00 (m, 3 H), 2.39 (d, J = 10.9 Hz, 1 H), 2.93 (s, 1 H), 3.12 (s, 1 H), 3.96 (d, J = 5.5 Hz, 1 H), 4.11 (t, J = 4.6 Hz, 1 H), 7.12-7.27 (m, 5 H), 7.42 (t, J = 7.6 Hz, 2 H), 7.53 (t, J = 7.5 Hz, 1 H), 7.97 (d, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 37.7, 39.0, 41.0, 42.0, 55.9, 57.0, 126.3 (4 × C), 126.5, 128.5 (4 × C), 133.2, 136.2, 142.4, 198.5, 213.9. IR (neat): 3056, 2997, 1749, 1675, 1596, 1447, 758 cm-1.
5-(4-Bromobenzoyl)-6-(4-bromophenyl)bicy-clo[2.2.1]heptan-2-one (Table
[2]
, Entry 2): 1H NMR (400 MHz, CDCl3): δ = 1.95 (m, 2 H), 2.00 (dd, J = 1.2, 10.7 Hz, 1 H), 2.35 (d, J = 10.7 Hz, 1 H), 2.92 (s, 1 H), 3.13 (s, 1 H), 3.89 (d, J = 5.5 Hz, 1 H), 3.95 (t, J = 5.0 Hz, 1 H), 7.09 (d, J = 8.9 Hz, 2 H), 7.41 (d, J = 8.5 Hz, 2 H), 7.63 (d, J = 8.5 Hz, 2 H), 7.83 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 38.0, 39.1, 41.2, 41.7, 55.8, 57.5, 120.5, 128.5 (3 × C), 128.8, 129.9, 131.9 (2 × C), 132.1 (2 × C), 135.1, 141.4, 197.5, 213.4. IR (neat): 2997, 2920, 1747, 1676, 1585, 1489, 1399, 1070, 1008, 841, 808 cm-1.
5-(4-Bromobenzoyl)-6-phenylbicyclo[2.2.1]heptan-2-one (Table
[2]
, Entry 3): 1H NMR (400 MHz, CDCl3): δ = 1.96-2.02 (m, 3 H), 2.41 (d, J = 10.9 Hz, 1 H), 2.98 (s, 1 H), 3.11 (s, 1 H), 3.93 (d, J = 5.6 Hz, 1 H), 4.02 (dd, J = 4.1, 5.6 Hz, 1 H), 7.20-7.33 (m, 5 H), 7.62 (d, J = 8.7 Hz, 2 H), 7.84 (d, J = 8.7 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 37.9, 39.2, 41.1, 42.2, 56.0, 57.3, 126.7 (3 × C), 128.6, 128.8 (2 × C), 129.8 (2 × C), 132.0 (2 × C), 135.2, 142.4, 197.8, 213.9. IR (neat): 2985, 2926, 1746, 1674, 1583, 1400, 1218, 1072, 1004, 770, 698 cm-1.
5-Benzoyl-6-(4-bromophenyl)bicyclo[2.2.1]heptan-2-one (Table
[2]
, Entry 4): 1H NMR (400 MHz, CDCl3): δ = 1.96-2.05 (m, 3 H), 2.36 (d, J = 10.6 Hz, 1 H), 2.93 (s, 1 H), 3.16 (s, 1 H), 3.92 (d, J = 5.6 Hz, 1 H), 4.02 (t, J = 4.8 Hz, 1 H), 7.10 (d, J = 8.5 Hz, 2 H), 7.41 (d, J = 8.5 Hz, 2 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.60 (t, J = 7.4 Hz, 1 H), 7.98 (d, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 37.8, 39.0, 41.1, 41.5, 55.7, 57.3, 120.2, 128.2 (2 × C), 128.3 (2 × C), 128.6 (2 × C), 131.6 (2 × C), 133.4, 136.1, 141.5, 198.3, 213.6. IR (neat): 2998, 2956, 2920, 1748, 1673, 1598, 1490, 1250, 1008, 810, 757, 693 cm-1.
5-(4-Bromobenzoyl)-6-(4-methoxyphenyl)bicy-clo[2.2.1]heptan-2-one (Table
[2]
, Entry 5): 1H NMR (400 MHz, CDCl3): δ = 1.95-2.05 (m, 3 H), 2.40 (d, J = 10.9 Hz, 1 H), 2.91 (s, 1 H), 3.11 (s, 1 H), 3.78 (s, 3 H), 3.86 (d, J = 5.3 Hz, 1 H), 3.98 (t, J = 4.8 Hz, 1 H), 6.84 (d, J = 8.9 Hz, 2 H), 7.14 (d, J = 8.7 Hz, 2 H), 7.61 (d, J = 8.5 Hz, 2 H), 7.83 (d, J = 8.7 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 37.9, 39.1, 41.1, 41.7, 55.3, 56.5, 57.5, 114.2 (2 × C), 127.8 (2 × C), 128.6, 129.9 (2 × C), 132.0 (2 × C), 134.4, 135.3, 158.3, 197.9, 213.9. IR (neat): 2963, 2937, 1749, 1668, 1582, 1514, 1251, 809 cm-1.
5-(4-Bromobenzoyl)-6-(4-methoxyphenyl)-8,8-dimethyl-bicyclo[2.2.2]octan-2-one (Scheme
[6]
): 1H NMR (400 MHz, CDCl3): δ = 1.04 (s, 3 H), 1.45 (s, 3 H), 1.58 (d, J = 14.0 Hz, 1 H), 1.92 (d, J = 14.0 Hz, 1 H), 2.02 (s, 1 H), 2.34 (s, 2 H), 2.55 (s, 1 H), 3.76 (s, 3 H), 4.02 (d, J = 8.2 Hz, 1 H), 4.31 (d, J = 8.2 Hz, 1 H), 6.84 (d, J = 8.7 Hz, 2 H), 7.17 (d, J = 7.7 Hz, 2 H), 7.63 (d, J = 8.7 Hz, 2 H), 7.87 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 29.1 (2 × C), 32.8, 35.2, 35.9, 36.7, 44.2, 46.1, 50.2, 55.2, 114.1 (2 × C), 128.4 (2 × C), 128.5, 129.8 (2 × C), 132.2 (2 × C), 132.3, 134.7, 158.3, 199.2, 214.9.
For dimerization reactions of 2-cyclohexen-1-one through the Morita-Baylis-Hillman-type mechanism, see:
13a
Risinger GE.
Haag WG.
J. Org. Chem.
1973,
38:
3646
13b
Hwu JR.
Hakimelahi GH.
Chou C.-T.
Tetrahedron Lett.
1992,
33:
6469
13c
Jenner G.
Tetrahedron Lett.
2000,
41:
3091
13d
Reingold ID.
Bowerman C.
John M.
Walters RS.
Daglen BC.
Butterfield AM.
Gembicky M.
Tetrahedron Lett.
2006,
47:
1653